
 
 
 

 ARL-RP-0522 ● APR 2015 
 
 
 

 US Army Research Laboratory 

 
 
Defects in Nonlinear Elastic Crystals: 
Differential Geometry, Finite Kinematics,  
and Second-Order Analytical Solutions 
 
by JD Clayton 
 
 
 

 
A reprint from ZAMM: Z Angew Math Mech. 2015;95(5):476–510. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Approved for public release; distribution is unlimited. 



 

 

NOTICES 
 

Disclaimers 
 

The findings in this report are not to be construed as an official Department of the 

Army position unless so designated by other authorized documents. 

 

Citation of manufacturer’s or trade names does not constitute an official 

endorsement or approval of the use thereof. 

 

Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

 ARL-RP-0522 ● APR 2015 

 
 US Army Research Laboratory 

 
 
Defects in Nonlinear Elastic Crystals: 
Differential Geometry, Finite Kinematics,  
and Second-Order Analytical Solutions 
 
 
by JD Clayton 
Weapons and Materials Research Directorate, ARL 
 
 
 

A reprint from ZAMM: Z Angew Math Mech. 2015;95(5):476–510. 
 
 

 

 

 

 

 

 

Approved for public release; distribution is unlimited. 

FOR OFFICIAL USE ONLY (delete if not FOUO) 



 

ii 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid 

OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

April 2015 

2. REPORT TYPE 

Reprint 

3. DATES COVERED (From - To) 

January 2013–January 2015 

4. TITLE AND SUBTITLE 

Defects in Nonlinear Elastic Crystals: Differential Geometry, Finite 

Kinematics, and Second-Order Analytical Solutions 

 

5a. CONTRACT NUMBER 

 

5b. GRANT NUMBER 

 

5c. PROGRAM ELEMENT NUMBER 

 

6. AUTHOR(S) 

JD Clayton 

5d. PROJECT NUMBER 

DRI13-WMR-019 

5e. TASK NUMBER 

 

5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

US Army Research Laboratory 

ATTN: RDRL-WMP-C 

Aberdeen Proving Ground, MD 21005-5066 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 

ARL-RP-0522 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 

10. SPONSOR/MONITOR'S ACRONYM(S) 

 

11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

 
13. SUPPLEMENTARY NOTES 

A reprint from ZAMM: Z Angew Math Mech. 2015;95(5):476–510. 

14. ABSTRACT 

A differential geometric description of crystals with continuous distributions of lattice defects and undergoing potentially large deformations 

is presented. This description is specialized to describe discrete defects, i.e., singular defect distributions. Three isolated defects are 

considered in detail: the screw dislocation, the wedge disclination, and the point defect. New analytical solutions are obtained for elastic 

fields of these defects in isotropic solids of finite extent, whereby terms up to second order in strain, involving elastic constants up to third 

order, are retained in the stress components. The strain measure used in the nonlinear elastic potential – a symmetric function, expressed in 

material coordinates, of the inverse deformation gradient – differs from that used in previous solutions for crystal defects, and is thought to 

provide a more realistic depiction of mechanics of large deformation than previous theory involving third-order Lagrangian elastic constants 

and the Green strain tensor. For the screw dislocation and wedge disclination, effects of core pressure and/or possible contraction along the 

defect line are considered, and radial displacement contributions arise that are absent in the linear elastic solution, affecting dilatation. Stress 

components are shown to differ from those of linear elastic solutions near defect cores. Volume change from point defects is strongly 

affected by elastic nonlinearity. 
15. SUBJECT TERMS 

dislocation, disclination, point defect, elasticity, differential geometry 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
OF ABSTRACT 

UU 

18.  NUMBER 
OF PAGES 

 

50 

19a. NAME OF RESPONSIBLE PERSON 

JD Clayton 

a. REPORT 

Unclassified 

b. ABSTRACT 

Unclassified 

c. THIS PAGE 

Unclassified 

19b. TELEPHONE NUMBER (Include area code) 

410-278-6146 
 Standard Form 298 (Rev. 8/98) 

Prescribed by ANSI Std. Z39.18 



ZAMM · Z. Angew. Math. Mech. 95, No. 5, 476 – 510 (2015) / DOI 10.1002/zamm.201300142

Defects in nonlinear elastic crystals: differential geometry, finite
kinematics, and second-order analytical solutions

J. D. Clayton∗

Impact Physics, RDRL-WMP-C, US ARL; Aberdeen, MD 21005-5066, USA

Received 14 June 2013, accepted 3 September 2013
Published online 28 October 2013

Key words Dislocation, disclination, point defect, elasticity, differential geometry.

A differential geometric description of crystals with continuous distributions of lattice defects and undergoing potentially
large deformations is presented. This description is specialized to describe discrete defects, i.e., singular defect distribu-
tions. Three isolated defects are considered in detail: the screw dislocation, the wedge disclination, and the point defect.
New analytical solutions are obtained for elastic fields of these defects in isotropic solids of finite extent, whereby terms
up to second order in strain, involving elastic constants up to third order, are retained in the stress components. The strain
measure used in the nonlinear elastic potential – a symmetric function, expressed in material coordinates, of the inverse
deformation gradient – differs from that used in previous solutions for crystal defects, and is thought to provide a more re-
alistic depiction of mechanics of large deformation than previous theory involving third-order Lagrangian elastic constants
and the Green strain tensor. For the screw dislocation and wedge disclination, effects of core pressure and/or possible con-
traction along the defect line are considered, and radial displacement contributions arise that are absent in the linear elastic
solution, affecting dilatation. Stress components are shown to differ from those of linear elastic solutions near defect cores.
Volume change from point defects is strongly affected by elastic nonlinearity.

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Analysis of defects in deformable crystals has been a principal application of differential geometric methods to continuum
mechanics of solids since the mid twentieth century. The earliest works linking continuous distributions of dislocations to
geometric concepts are often attributed to Kondo, Bilby, Kröner, and co-workers [8,49,51]. Accompanying such works were
development of a multiplicative decomposition of the deformation gradient [10, 51] into lattice deformation, perhaps more
often termed “elastic” deformation, and that due to dislocation glide, perhaps more often termed “plastic” deformation,
and a linear connection with vanishing curvature whose torsion can be related to the dislocation density tensor [8, 49, 51].
These theories established a mathematical foundation for kinematics of finite deformation plasticity theory developed in
subsequent decades [6, 37, 55, 75, 80].

Early geometric continuum theories admitting distributions of more general kinds of defects, including disclinations
and point defects such as vacancies, substitutional atoms, or interstitial atoms [4, 5, 9, 51, 60] were introduced soon after
dislocation theories. In some such descriptions [9, 50, 51] additional terms are incorporated multiplicatively into the de-
formation gradient to represent contributions of particular mechanisms distinct from dislocation slip (e.g., dilatation from
point defects). The linear connection describing geometry of the defective crystal lattice may have curvature that can be re-
lated to disclination density and non-metricity that can be related to inhomogeneous distributions of point defects. General
and rigorous geometric analyses of heterogeneous bodies undergoing finite incompatible deformation appeared around the
same time [12, 64, 88].

More recent works have sought to extend or even reformulate continuum field theories of defective crystals applicable
to the finite strain regime. Several works particularly relevant to developments in this paper are mentioned in what follows;
a review of historic and more recent literature is beyond the present scope but can be found in [77]. In [1], an elastic-
plastic dislocation field theory was developed that reduces to nonlinear elastic theory of distributed dislocations [91] in
the time-independent limit. Gauge field theory has been applied to describe lattice defects [34, 53, 58], including single
dislocations and dislocation distributions. Dislocations, disclinations, and point defects have recently been analyzed in
theoretical frameworks incorporating Cartan’s moving frames [92–94]. Continuum dislocation theory has also been applied
to shells undergoing finite deformation [3, 96].

∗ Corresponding author E-mail: jdclayt1@verizon.net, Phone: +1 410 278 6146, Fax: +1 410 278 2460
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In [19], a kinematic description was developed that accounts for simultaneous existence of dislocations, disclinations,
and point defects. This treatment extended previous theory [5, 51, 60] by including statistically stored defects [i.e., disloca-
tions (disclinations) with no net Burgers (Frank) vector] and incorporating a third term in the multiplicative decomposition
associated with residual lattice deformation remaining in an element of material upon stress release, induced by microscopic
elastic fields of defects within. Further developments on the origin of this third term in dislocated or twinned single crystals
and polycrystals are reported in [13,17,22–24]. Thermodynamics and balance laws for a micropolar medium with disloca-
tions and disclinations were developed in [25], and the geometric treatment was extended to dielectric solids with mobile
vacancies and disclinations associated with domain walls [21]. Further derivations of fundamental geometric relations and
potential applications in modern crystal plasticity theory are reported in the monograph [14].

In this paper a general theory for continuous defect distributions is presented first and then specialized to isolated defects
in the Eulerian setting, differing from works by Kröner and Seeger [52] and Willis [91] that dealt only with dislocations in
the Lagrangian setting. For elastic bodies containing dislocations, disclinations, and point defects, some parallels between
continuous and discrete defect theories were noted by De Wit [31,32], albeit restricted to linear theory, i.e., small deforma-
tion. Nonlinear theory developed in the present work extends [31, 32] by associating certain singular part(s) of total finite
distortion with inelastic deformation due to isolated defects, making use of generalized functions [39] to address singular
quantities.

Linear elasticity is typically deemed sufficient for representing elastic fields beyond some distance from the core of the
defect. For defect densities that are not too large, the mean spacing between defects is great enough that stress fields can
be addressed using linear elastic solutions. However, close to the core, strain component(s) from linear elastic solutions are
quite large, rendering the linear analysis inaccurate [38, 81]. Furthermore, some physical features apparent in experiments
and atomic simulation such as residual lattice dilatation [44,76,95] and phonon scattering [71] cannot be predicted by linear
theory, but can be predicted using nonlinear elasticity.

Analytical solutions to nonlinear boundary value problems for crystals with individual defects can be considered rela-
tively scarce relative to abundant linear elastic solutions. Exact analytical solutions appear to exist only for solids described
by strain energy potentials that may be physically unrealistic for real crystals. Exact closed-form solutions can be obtained
for incompressible elasticity, as has been demonstrated for the screw dislocation [1, 69, 92, 96]. It has been noted [38] that
displacement fields of a screw dislocation and a wedge disclination are a subset of a larger family of controllable deforma-
tions for which universal solutions exist in incompressible isotropic elastostatics [89]. Incompressible constitutive models,
by definition, cannot address residual elastic dilatation and hence are not physically realistic in this regard. Analytical so-
lutions for wedge disclinations and point defects have been reported for materials obeying incompressible neo-Hookean
elasticity [93,94]. For compressible solids, several exact analytical solutions for dislocation and disclination configurations
have been derived using finite strain measures [33, 96, 97], but the semi-linear energy potential used in these analyses may
not address fully nonlinear behavior in typical crystalline metals and minerals. In particular, this semi-linear potential de-
pends on only two elastic constants rather than the usual five for a second-order nonlinear hyperelastic and isotropic solid.
An exact solution has also been derived for the screw dislocation in an isotropic solid with a nonlinear elastic potential
depending on the small strain tensor [46].

Approximate analytical solutions have been found for solids obeying more physically realistic strain energy potentials.
In such approaches, a nonlinear elastic potential is invoked, but higher-order products of displacement gradients entering
the stress field are truncated above a certain order. The qualifier “second-order” is used here to denote an elasticity solution
wherein stress depends quadratically on strain, with the elastic potential cubic in strain and including elastic constants of
up to order three. A “first-order” solution denotes a linear stress-strain response and a quadratic elastic potential, i.e., usual
linear elasticity.

Kröner and colleagues [52, 67] instituted a geometric stress function method for obtaining second-order accurate solu-
tions for isotropic dislocated bodies obeying Murnaghan’s Eulerian elastic potential [61]. Stress fields were reported for
dislocations in infinite bodies and in finite bodies with stress-free cores, for singular densities of edge and screw dislo-
cations; this solution technique explicitly yields stresses but not displacements. Seeger and Mann [72] derived a solution
for the screw dislocation with a hollow (stress-free) core using an isotropic second-order Lagrangian analysis, i.e., strain
energy potential in terms of Green strain with up to third-order elastic constants. Willis [91] formulated an iterative pro-
cedure involving Green’s functions for infinite anisotropic bodies with dislocations, but did not address core boundary
conditions. An approximate solution for an edge dislocation in an infinite medium obeying isotropic Lagrangian elasticity
was reported [48], following general techniques for analysis of planar second-order nonlinear elastic problems [2]. Teodo-
siu and Soós [81,82] formalized a general iterative procedure1 for analysis of dislocations in nonlinear elasticity, similar to
those implemented in [38, 72, 73, 91], demonstrating certain uniqueness properties of first- and second-order solutions. A

1 Such iterative methods for solution of nonlinear elastic problems were apparently first reported by Signorini [74] and were applied intuitively to a
number of problems by Murnaghan [62].
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second-order solution for the isolated screw dislocation in a finite cylinder with core pressure was derived in [81], incorpo-
rating Eulerian coordinates and the Lagrangian energy potential mentioned above. Advantages of Eulerian coordinates over
Lagrangian coordinates have been discussed [83]. More recently, gauge theory was used to obtain a second-order solution
for a screw dislocation in isotropic Eulerian elasticity [58].

For an isolated wedge disclination, a solution incorporating both Eulerian coordinates and Murnaghan’s Eulerian poten-
tial was derived [68,86], but core pressure was not addressed. For an isolated point defect, Seeger and Mann [72] extended
the approximate second-order Lagrangian analysis of Murnaghan [62], who treated a thick spherical shell with pressurized
interior and exterior boundaries. In this work [72], both the defect and medium were treated as elastic bodies with po-
tentially different second- and third-order elastic constants; see also [57] that addresses related nonlinear elastic problems
including interactions among spherical inclusions.

As inferred from above, second-order solutions involve elastic constants of orders two and three. These approximate
solutions are usually justified by the limitation that complete elastic constants of order four have rarely been available
for real materials, and solutions of higher order would require knowledge of fourth-order constants. Possible relationships
between fourth-order constants and geometric features of the edge dislocation core have been noted [47]. Longitudinal
fourth-order constants can be inferred from shock compression data [16], and Density Functional Theory (DFT) can used to
predict fourth-order constants [63], though accuracy of such predictions is uncertain. Regardless, when strains become large
enough that third-order elastic constants are insufficient, it becomes prudent to study core fields using atomic simulation
[20, 26, 27, 76] rather than traditional continuum elasticity. Nonlocal, strain gradient, and/or gauge theories [53, 58] of
continua may also enable a physically realistic description (e.g., smoothed or non-singular) of defect cores. Second-order
solutions derived later in this work are intended for regimes and materials where a third-order elastic potential is accurate
and exclude the (singular) defect core. Higher-order gradients of deformation (e.g., as treated in a general constitutive
formalism in [79]) are not incorporated in the elastic potential used here.

Previous second-order elastic analyses of lattice defects mentioned above have either used a Green Lagrangian elastic
potential W̄ (E) [14,62,87] or Murnaghan’s Eulerian potential W̃ (e) [61], the latter restricted to isotropic solids. [Precisely,
letting F denote the two-point deformation gradient tensor, Green strain is E = 1

2 (F TF − 1) and Almansi strain is
e = 1

2 (1 − F−TF−1).] In contrast, new nonlinear elastic solutions derived in the present work incorporate the less
often encountered Eulerian strain energy potential Ŵ (D), where D = 1

2 (1 − F−1F−T). Symmetric tensor D is termed
an “Eulerian” strain in material coordinates [28], is invariant under rigid rotations of the spatial coordinate frame, and
was introduced by Thomsen [85] and soon thereafter Davies [29] for describing the nonlinear thermoelastic response of
pressurized cubic crystals. Unlike W̃ , potential Ŵ can be applied to anisotropic solids [66,90]. This model has demonstrated
greater intrinsic stability [43] at large shear and compression than usual Lagrangian elasticity incorporating W̄ that tends
towards instability at large uniaxial compression [16]. It is also more accurate for addressing the response of most crystalline
solids under hydrostatic compression, whereby at second order it degenerates to the Birch-Murnaghan equation-of-state
[11,84] for cubic crystals and isotropic media. In contrast, second-order Lagrangian theory tends to underestimate pressure
at large compression [45]. Improved accuracy of Ŵ over W̄ for describing hydrostatic compression of lower symmetry
crystals has been reported [66, 90]. The nonlinear elastic response of diamond under finite strain predicted by DFT [63]
is also better represented by Eulerian elasticity incorporating Ŵ than Lagrangian elasticity incorporating W̄ , with elastic
constants of up to order four considered in each representation. Recent analysis [16] has empirically demonstrated other
advantages of Eulerian theory (based on Ŵ ) over Lagrangian theory for homogeneous static compression and homogeneous
shear of representative cubic or isotropic solids with Cauchy symmetry of third-order elastic constants. For crystals of lower
symmetry (e.g., quartz and sapphire) subjected to uniaxial shock compression, advantages of Eulerian over Lagrangian
theory were less evident. Solutions derived later in the present paper are the first known for dislocations, disclinations, and
point defects incorporating elastic potential Ŵ (D).

Eulerian potential Ŵ (D) is used to obtain new second-order analytical solutions to three discrete defect problems in
the present paper, which is structured as follows. In Sect. 2, continuum defect theory is concisely reviewed, refining certain
aspects of earlier work [14,19]. In Sect. 3, the screw dislocation is analyzed. In Sect. 4, the wedge disclination is analyzed.
In Sect. 5, the point defect is analyzed. For each kind of defect, it is shown how continuum field theory with a multiplicative
decomposition of the deformation gradient and additive decomposition of a linear connection can be applied to the limiting
case of a singular defect density. A second-order elastic analysis is used in each case, with solutions expressed in Eulerian
coordinates. For the dislocation and disclination, core pressure is included. All three solutions are believed to be new.
Representative calculations demonstrate differences between nonlinear and linear elastic solutions. Conclusions follow in
Sect. 6. Appendices A and B provide supporting discussion on finite deformation in cylindrical and spherical coordinate
systems used in the derivations, while Appendix C describes nonlinear elastic potentials and associated second- and third-
order elastic constants and clarifies differences among several nonlinear elastic theories. Direct tensor notation [64,78] and
coordinate notation of tensor calculus [36, 70, 77] are used interchangeably as needed.

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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2 Continuous defect distributions

2.1 General continuum theory

Consider a solid body whose unstressed reference configuration B0 is perfectly crystalline and simply connected. At some
time t, this body in its current configuration representation B may contain defects and may support stresses, both residual
and due to externally applied traction. Deformed body B is assumed to remain simply connected in the continuum theory,
and defects are characterized by spatially continuous density functions. A local volume element is associated with a material
particle at position X in three-dimensional Euclidean space and is mapped to position x at time t. This element may contain
a number of defects such as dislocations, the product of whose number and Burgers vector remains finite [91].

Henceforth attention is restricted to a deformed configuration at a single time t, such that the description becomes time-
independent. Let {XA} and {xa} denote coordinate charts covering B0 and B, respectively. The following one-to-one and
presumably three times differentiable functions exist:

x = x(X), X = X(x). (2.1)

Letting ∂A (·) = ∂(·)/∂XA and ∂a(·) = ∂(·)/∂xa , natural basis vectors are

GA (X) = ∂AX, ga(x) = ∂ax. (2.2)

The deformation gradient and its inverse are

F = ∂Ax ⊗ GA , F−1 = ∂aX ⊗ ga , (2.3)

where, with GAB (X) and gab(x) referential and spatial metric tensor components,

GA = GAB GB = (GA · GB )GB , ga = gabg
b = (ga · gb)gb . (2.4)

In component form,

Fa
�A = ∂Axa , F−1A

�a = ∂aXA. (2.5)

Conventional gradient operators on B0 and B are denoted by ∇0 and ∇. For example, letting V and v denote material and
spatial vector fields, covariant derivatives are

∇0V = ∂B V ⊗ GB = (∂B V A + Γ��A
BC V C )GA ⊗ GB , (2.6)

∇v = ∂bv ⊗ gb = (∂bv
a + γ��a

bc vc)ga ⊗ gb , (2.7)

where Levi-Civita connection coefficients

Γ��A
BC = 1

2 GAD (∂B GC D + ∂C GBD − ∂D GBC ), γ��a
bc = 1

2 gad(∂bgcd + ∂cgbd − ∂dgbc). (2.8)

From the properties of mappings in (2.1) and presumed positivity of local volume elements in B0 and B in right-handed
coordinate systems, restrictions det F > 0 and det F−1 > 0 emerge. Since {XA} and {xa} are holonomic, ∂A [∂B (·)] =
∂B [∂A (·)] and ∂a [∂b(·)] = ∂b [∂a(·)], and since the body is embedded in Euclidean space, Riemann-Christoffel curvature
tensors constructed from (2.8) vanish identically. From (2.5) and symmetry of connection coefficients in (2.8), the following
local compatibility (i.e., null curl) conditions apply:

∇0 × F = 0, ∇× (F−1) = 0. (2.9)

For defective crystals a multiplicative decomposition of F is invoked [10, 14, 51]:

F = F LF P, F a
�A = F L a

�αF P α
�A . (2.10)

Lattice deformation F L accounts for elastic stretch (recoverable and/or residual) and rotation; plastic deformation F P

accounts for slip from dislocations that preserves the lattice structure [9,10]. Both fields are assumed invertible, with positive
determinants, and at least twice differentiable with respect to XA and xa . Neither, however, is necessarily integrable to a
motion nor satisfies conditions analogous to (2.9); i.e., lattice and plastic deformation tensors are generally anholonomic.
Thus, the intermediate configuration B̃ of the body implied by (2.10) cannot be embedded in three-dimensional Euclidean
space [15, 41]. Letting {gα} denote a generally non-coordinate basis, with reciprocal basis {gα},

F L = F L a
�αga ⊗ gα , F P = F P α

�Agα ⊗ GA . (2.11)

www.zamm-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Introduced at each point X ∈ B0 is a triad of undeformed lattice director vectors {dA} and their reciprocals {dA},
such that 〈dA ,dB 〉 = δA

B with 〈·, ·〉 a scalar product. Referential director vectors are orthonormal: dA · dB = δAB and
dA = δAB dB . In crystal structures with cubic, tetragonal, or orthorhombic symmetry, a referential lattice vector can be
assigned parallel to each edge of the unit cell. Also introduced at each x ∈ B is a triad of deformed lattice directors {da}
and their reciprocals {da}, such that 〈da ,db〉 = δa

b . Deformed director vectors are generally neither orthogonal nor of unit
length:

da = F L a
�αδα

AdA , da = F L−1α
�aδA

α dA . (2.12)

The metric tensor associated with the deformed lattice is

d = (da · db)ga ⊗ gb = F L−TF L−1 . (2.13)

In components, this metric and its inverse are

dab = F L−1α
�aδαβ F L−1β

�b , dab = F L a
�αδαβ F L b

�β , (2.14)

leading to

da = dabd
b , da = dabdb . (2.15)

Components of lattice deformation can be inferred from scalar products of referential and deformed directors:

F L a
�α = 〈da ,dA 〉δA

α , F L−1α
�a = 〈da ,dA 〉δα

A , (2.16)

and if a coordinate frame on B̃ is chosen parallel to the reference lattice such that {gα} → {dAδA
α },

F L = ga ⊗ da , F L−1 = da ⊗ ga . (2.17)

In the continuum field theory of defects, the geometry of the (possibly defective) crystal lattice is characterized by
covariant derivatives of the spatial lattice director fields, defined as [14, 19, 60]

∇̂bda = ∂bda − Γ̂��c
ba dc , ∇̂bd

a = ∂bd
a + Γ̂��a

bc dc . (2.18)

A complete description of the deformed lattice is given by the fields {da} and { ∇̂da}, where a = 1, 2, 3. From (2.16)
and (2.18), this description is furnished by knowledge of the fields F L (up to 9 components) and Γ̂ (up to 27 components)
which are available at each point x ∈ B, or equivalently at each point X ∈ B0 since x and X are one-to-one in (2.1).
An additive decomposition of connection coefficients associated with ∇̂, assumed at least once differentiable over B, is
invoked [14, 19, 60]:

Γ̂��a
bc = Γ̄��a

bc + Q��a
bc . (2.19)

Coefficients Γ̄ΓΓ are spatial representations of those of the usual non-Riemmannian connection of dislocation field theory,
referred to as a “crystal connection” [54] in the context of nonlinear elastoplasticity or an example of a “Weitzenböck”
connection in differential geometry [53, 92]:

Γ̄��a
bc = F L a

�α∂bF
L−1α

�c = −F L−1α
�c∂bF

L a
�α . (2.20)

The torsion tensor of (2.19) is

T̂ = Γ̂��a
[bc]g

b ⊗ gc ⊗ ga , T̂ ��a
bc = 1

2 (Γ̂��a
bc − Γ̂��a

cb ) = F L a
�α∂[bF

L−1α
�c] + Q��a

[bc], (2.21)

where indices in square brackets are skew. Verification is straightforward that the Riemann-Christoffel curvature tensor
from (2.20) vanishes identically, meaning this connection is flat or integrable:

R̄ = 2(∂[b Γ̄��a
c]d + Γ̄��a

[b|e|Γ̄
��e
c]d)g

b ⊗ gc ⊗ gd ⊗ ga

= 2F L a
�α∂[b∂c]F

L−1α
�dg

b ⊗ gc ⊗ gd ⊗ ga = 0. (2.22)

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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Indices in vertical bars are excluded from (anti)symmetry operations. The curvature tensor of (2.19) is [14, 70]

R̂ = 2(∂[b Γ̂��a
c]d + Γ̂��a

[b|e|Γ̂
��e
c]d)g

b ⊗ gc ⊗ gd ⊗ ga

= 2(∇̂[bQ
��a
c]d + T̂ ��e

bc Q��a
ed + Q��e

[b|d|Q
��a
c]e)g

b ⊗ gc ⊗ gd ⊗ ga , (2.23)

where

∇̂bQ
��a
cd = ∂bQ

��a
cd + Γ̂��a

be Q��e
cd − Γ̂��e

bc Q��a
ed − Γ̂��e

bd Q��a
ce . (2.24)

Nonmetricity of connection (2.19) is

∇̂cdab = ∂cdab − Γ̂��e
ca dbe − Γ̂��e

cb dae = −(Q��e
ca deb + Q��e

cb dea) = −2Qc(ab) , (2.25)

where indices in parentheses are symmetric and d is used to lower indices of Q. Covariant components of R̂ are

R̂bcda = R̂���e
bcddea = 2(∇̂[bQc]da + T̂ ��e

bc Qeda − Q��e
[b|d|Qc]ae), (2.26)

R̂[bc](da) = R̂bc(ad) = 2(∇̂[bQc](da) + T̂ ��e
bc Qe(da)), (2.27)

R̂[bc][da ] = −R̂bc[ad] = 2(∇̂[bQc][da ] + T̂ ��e
bc Qe[da ]) − Q��e

b[dQ|c|a ]e + Q��e
c[dQ|b|a ]e . (2.28)

Curvature and non-metricity arise from Q and vanish when Γ̂ΓΓ = Γ̄ΓΓ; nonmetricity further depends only on the symmetric
part of Q in (2.25).

Mathematical quantities associated with defect densities are now defined. The spatial dislocation density tensor is

ααα = −T̂ : εεε = εbcd T̂ ��a
dc ga ⊗ gb , (2.29)

where εεε is the spatial permutation tensor. Usual dimensionless permutation symbols are eabc = eabc = g−1/2εabc =
g1/2εabc with g = det[∂ax · ∂bx]. Let (·)T denote the transpose of a second-order tensor. The spatial disclination density
tensor is

θθθ = − 1
4 (εεε : R̂ : εεε)T = 1

4 εacdεbef R̂f ecdga ⊗ gb . (2.30)

Henceforth restricting nonmetricity as

Qa(bc) = − 1
2 ∇̂adbc = Υadbc , Qb(cd)d

da = 1
2 dad(Qbcd + Qbdc) = Υbδ

a
c , (2.31)

a vector quantity associated with point defects can be defined [14, 21]:

ϑϑϑ = −∇×ΥΥΥ = εεε : ∇ΥΥΥ = εabc∂cΥbga . (2.32)

Inverting (2.29), (2.30), and (2.32) enables reconstruction of the torsion and curvature:

T̂ ��a
bc = 1

2 εcbdα
ad , R̂ab[cd] = εbaeεcdf θf e , R̂ab(cd) = εbaeϑ

edcd . (2.33)

Identify B as a manifold equipped with connection ∇̂. Let {u,v,w} be smooth vector fields on the tangent bundle of
B. Then

(∇̂∇̂u) : (v ⊗ w − w ⊗ v) = (R̂u − 2T̂ ∇̂u) : (v ⊗ w), (2.34)

or in a coordinate chart {xa} [70],

∇̂[b∇̂c]u
a = 1

2 R̂���a
bcdud − T̂ ��d

bc ∇̂du
a . (2.35)

This identity can be used to prove that under a “Cartan displacement”, a vector u undergoes a first-order (with respect
to transported distance dx) change upon parallel transport about an infinitesimal circuit dc of the form u → u + δu,
where [60, 70, 89]

δu = −( 1
2 R̂���a

bcdud + T̂ ��a
bc )dabc ga . (2.36)
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The oriented area element enclosed by dc has magnitude da, unit normal n, and obeys

da = dabcgb ⊗ gc = εbcanada gb ⊗ gc , nada = 1
2 εabcdabc . (2.37)

From (2.36), δu consists of two parts: one proportional to u due to curvature and the other independent of u due to torsion,
the latter associated with “closure failure” of the circuit itself. Motivated by this definition, an infinitesimal spatial Burgers
vector db̂ is, with x → x + db̂ under a Cartan displacement [14, 60],

db̂(x) = −(T̂ + 1
2 R̂x) : da. (2.38)

Extending dc to a finite circuit c enclosing area a (i.e., a Burgers circuit on the deformed crystal) and choosing {ga} constant
over B, the total spatial Burgers vector is

b̂ =
∫

a

db̂ = −
∫

a

(T̂ + 1
2 R̂x) : da. (2.39)

This can be expressed in terms of defect densities using (2.33) [14]:

b̂a =
∫

a

αabnbda +
∫

a

dacεcdeθ
dbxenbda +

∫
a

xaϑbnbda. (2.40)

2.2 Particular cases: single defect types

It is instructive to consider cases when only one type of defect is present. A sufficient description of a crystal containing
only dislocations is obtained by forcing Q = 0 in (2.19), such that Γ̂ΓΓ → Γ̄ΓΓ and ∇̂ → ∇̄ describe a flat connection with
non-vanishing torsion and vanishing nonmetricity. Differentiation of (2.12) with dA = constant yields the parallel transport
equation

∂bda = (∂bF
L−1α

�a)F L c
�αdc = Γ̄��c

ba dc ⇔ ∇̄bda = 0. (2.41)

The “local” or spatial dislocation density tensor becomes

ααα = −F L[∇× (F L−1)], αab = F La
�αεbcd∂dF

L−1α
�c . (2.42)

Defining the “true” dislocation density and infinitesimal Burgers vector as

α̃αα = F L−1ααα = −∇× (F L−1), db̃ = α̃ααnda, (2.43)

application of Stokes’s theorem with (2.11) produces the true Burgers vector

b̃ = b̃αgα =
∫

a

db̃ =
∫

a

α̃ααnda = −
∮

c

F L−1dx = −
∮

C

F PdX, (2.44)

where C is the image of c on B0 and {gα} are chosen constant over the domain. For a density of dislocations all having the
same unit tangent line ξξξ and discrete Burgers vector b, (2.42) yields ααα = ρb⊗ ξξξ, where ρ is the number of dislocations per
unit area a. Accurate when ρ is not too large, in dislocation theory it is conventionally assumed

F L = F EF I ≈ F E, F = F EF IF P ≈ F EF P, (2.45)

where F E accounts for rigid rotation and stretch conjugate to applied stress [6, 55, 80], and F I accounts for residual
distortion (e.g., dilatation from dislocation cores) [22] not addressed by slip deformation F P which is by definition lattice
preserving [9, 10, 14, 22] and thus isochoric.

For a body containing only disclinations with no history of slip or point defects, the following conditions are imposed:

F = F L = F EF I, ααα = 0, ϑϑϑ = 0, (2.46)

where F I accounts for residual deformation associated with disclinations. These lead to the following constraints that
reduce Q to no more than 6 independent components:

Γ̄��a
[bc] = 0, T̂ ��a

bc = Q��a
[bc] = 0, Qa(bc) = 0. (2.47)
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Thus Γ̂ΓΓ and ∇̂ now describe a Riemannian connection, i.e., vanishing torsion and nonmetricity but non-vanishing curvature.
Thus a metric exists whose Levi-Civita connection is Γ̂ΓΓ; this metric is an integral function of Q that degenerates to the Levi-
Civita connection of dab when Q vanishes. The local Burgers vector is

b̂ =
∫

a

d−1εεε : (θθθn ⊗ x)da. (2.48)

For a density of disclinations all having the same unit tangent line ξξξ and discrete Frank rotation vector ω̂ωω, the spatial
disclination density tensor is θθθ = ρω̂ωω ⊗ ξξξ, where ρ is the number of disclinations per unit area a. The infinitesimal Burgers
vector then reduces to db̂ = ρd−1(ω̂ωω × x)〈ξξξ,n〉da. Unlike the case for dislocations only, here the Burgers vector depends
on choice of coordinate system by which x is measured, i.e., db̂ is not translationally invariant. According to (2.48), each
disclination is effectively assigned a radius [14, 25, 60] measured from the origin of this coordinate system.

For a body containing only point defects, with no history of slip or disclinations, the following conditions are imposed:

F = F L = F EF I, ααα = 0, θθθ = 0, (2.49)

where F I accounts for residual deformation associated with point defects, which is hereafter assumed dilatational or spher-
ical:

F I = (1 + ρ̃δυ)1/3gα ⊗ gα , F I−1 = (1 − ρ̂δυ)−1/3gα ⊗ gα . (2.50)

The number of point defects per unit reference volume is ρ̃, and δυ is the residual volume change per defect. The number
of defects per unit intermediate volume is ρ̂, and ρ̂ = ρ̃/(1 + ρ̃δυ). The following constraints, necessary2 for satisfaction
of (2.49), are imposed, corresponding to integrable F L−1 and vanishing (2.21) and (2.28):

T̂ ��a
bc = 0 ⇒ Υ[bδ

a
c] = 1

4 dad(Qcbd − Qcdb − Qbcd + Qbdc),

R̂[bc][da ] = 0 ⇒ 2∇̂[bQc][da ] = −2Q��e
[bc]Qe[da ] + Q��e

b[dQ|c|a ]e − Q��e
c[dQ|b|a ]e . (2.51)

The local Burgers vector is

b̂ =
∫

a

x〈ϑϑϑ,n〉da. (2.52)

As was the case for disclinations, here the Burgers vector is not translationally invariant. The Burgers vector from (2.52) is
proportional to distance from the origin and is directed radially outward from the origin. If the density of point defects is
uniform throughout an infinite body B, then (2.52) must vanish for any choice of coordinate system, which implies ϑϑϑ = 0
for any such uniform distribution.

In general, when dislocations, disclinations, and point defects are all present, three-term decomposition F = F EF IF P =
F LF P applies. The primary distinction between F I and F P is that the former affects the lattice directors through (2.12)
while the latter does not. Inelastic deformation associated with distributed disclinations and point defects includes di-
latation (as well as possible shape change and rotation) and cannot be lattice-preserving; therefore, such deformation is
encompassed by F I. Inelastic deformation due to dislocation glide, i.e., shearing on slip planes, is both isochoric and lattice-
preserving, and is measured by F P. However, in geometrically linear theories of crystal plasticity, wherein slip directors
are assumed constant, inelastic deformation from disclinations and point defects is often assigned to plastic distortion along
with deformation from slip [14, 31, 32].

2.3 Nonlinear elasticity

Applications of the theory in subsequent sections consider isolated line defects (single dislocation or disclination) and
isolated point defects (single vacancy or substitutional/interstitial atom). The method of solution involves assignment of a
singular density of defects at a line or a point and then excluding a small region (e.g., a cylinder surrounding the line or
a sphere surrounding the point) from the domain over which equilibrium equations are solved. For such applications3, the

2 Previously [14, 19] conditions Qa [bc ] = 0 were imposed for a body both point defects and (possibly) dislocations; these conditions are sufficient
but not necessary for vanishing disclination density.

3 In prior work [14, 25] considering time dependent problems involving continuous defect distributions, dependence of strain energy on defect
densities was permitted, and additional balance laws for thermodynamic conjugates (e.g., couple stresses) to defect densities were proposed. These
additional balance laws are trivially satisfied in the present context since defect densities vanish over domains excluding defect cores, but in other
problems they are intended to affect kinetics and restrict equilibrium defect distributions. Proper accounting for stored energy of cold work [7] in
an externally unstressed element of material requires that the element’s strain energy depend on defect density [14].
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following hyperelastic constitutive model for strain energy per unit reference volume W suffices:

W = W (F E), P = ∂W/∂F E = P �α
a ga ⊗ gα . (2.53)

Here P is a kind of (generally non-symmetric) first Piola-Kirchhoff stress. To ensure invariance under rigid rotation, it is
implicitly understood that W depends only on some measure of stretch associated with F E. The usual symmetric Cauchy
stress and corresponding static equilibrium equations on B, in the absence of body force, are

σσσ = J−1PF E T, ∇ · σσσ = 0, (2.54)

where the Jacobian determinant J = 1
6 εabcε

ABC Fa
�AF b

�B F c
�C = det[∂Axa ](g/G)1/2 . Equilibrium equations can be mapped

to the intermediate configuration B̃ as demonstrated in coordinate-free notation in [59, 64] and for particular choices of
anholonomic coordinates in [15]; torsion of the crystal connection and possible skew-symmetric parts of the coordinate
connection on B̃ enter the result.

3 Screw dislocation

3.1 Geometric description

Consider a deformed body B with boundary ∂B. In the reference configuration, the image of this body and its boundary
are B0 and ∂B0 . Cylindrical coordinates covering B and B0 are (r, θ, z) and (R,Θ, Z) and are described fully in Ap-
pendix A (See Supplementary Material, Wiley online library), including basis vectors; Cartesian coordinates are (x, y, z)
and (X,Y,Z).

An Eulerian description of deformation is invoked here, essentially inverting the Lagrangian description of Seeger and
Mann [72]. Let the unit tangent line of the dislocation be oriented along the z-axis, i.e., ξξξ = gz . The general ansatz for
deformation due to a screw dislocation in an isotropic body is

R(r) = r − u(r), Θ(θ) = θ, Z(θ, z) = z − w(ϕ) − s(z). (3.1)

Radial displacement is u(r). Angle θ is multi-valued upon complete revolutions around the dislocation line. Slip plane S

corresponds to the half-plane (y = 0, x < 0), or θ = ±π. Following [32], ϕ is introduced to maintain uniqueness of the
deformation field and enable description of the slip discontinuity via generalized functional analysis [39]. Angle ϕ is single
valued but discontinuous, and is defined as [32]

ϕ(x, y) = tan−1(y/x) + πH(−x)[H(y) − H(−y)], (3.2)

where the arctangent is restricted to its principal value in the range (− π
2 , π

2 ) and

H(x) = 0 ∀x < 0; H(x) = 1 ∀x > 0. (3.3)

Note that

ϕ ∈ (−π, π), �ϕ� = ϕ|θ=π − ϕ|θ=−π = 2π, ϕ = θ ∀θ ∈ (−π, π). (3.4)

Generalized derivatives [39] of ϕ(x, y) are [32]:

∂xϕ = −y/r2 , ∂yϕ = x/r2 + 2πH(−x)δ(y), (3.5)

where δ(y) = dH(y)/dy = H′(y) is the Dirac delta function. The following generalized derivatives are also noted for
functions whose ordinary derivatives are O(1/r2) [32]:

∂x(x/r2) = 1/r2 − 2x2/r4 + πδ(r), ∂y (y/r2) = 1/r2 − 2y2/r4 + πδ(r), (3.6)

where δ(r) = δ(x)δ(y) in polar cylindrical coordinates.
For the screw dislocation, the true Burgers vector and function w are

b̃ = b̃gz = b̃GZ , w = b̃ϕ/(2π). (3.7)

The true Burgers vector is constant. Since θ = Θ, basis vectors in Appendix A (See Supplementary Material, Wiley online
library) here obey (1/r)gθ = (1/R)GΘ = eθ = EΘ . Displacement u = x − X in (A.38) reduces to

u = u(r)gr + [w(ϕ) + s(z)]gz = u(r)GR + [w(ϕ) + s(z)]GZ . (3.8)
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Displacement is continuous except for that due to the jump in w across S:

�u� = u|θ=π − u|θ=−π = b̃. (3.9)

In curvilinear coordinates, the inverse deformation gradient from (3.1) is

F−1 = F−1R
�r GR ⊗ gr + F−1Θ

�θ GΘ ⊗ gθ + F−1Z
�z GZ ⊗ gz + F−1Z

�θ GZ ⊗ gθ

= (dR/dr)GR ⊗ gr + GΘ ⊗ gθ + ∂zZGZ ⊗ gz + ∂θZGZ ⊗ gθ

= [1 − u′(r)]GR ⊗ gr + GΘ ⊗ gθ + [1 − s′(z)]GZ ⊗ gz − ∂θwGZ ⊗ gθ , (3.10)

where u′ = du/dr and s′ = ds/dz. From (3.5),

F−1Z
�θ = − b̃

2π
[−r sin θ∂xw + r cos θ∂yw] = − b̃

2π
[1 − 2πrH(−x)δ(y)]. (3.11)

To fix translational invariance of the origin and ensure volume remains positive,

u(0) = 0, s(0) = 0; (1 − u/r)(1 − u′)(1 − s′) > 0. (3.12)

The final decomposition (2.45) is now applied, such that

F = F EF P, F−1 = F P−1F E−1 . (3.13)

Extending the linear theory of De Wit [32] to the geometrically nonlinear regime, the “elastic” part of F−1 is defined as
that which is continuous and single-valued over B except at r = 0:

F E−1 = [1 − u′(r)]GR ⊗ gr + GΘ ⊗ gθ + [1 − s′(z)]GZ ⊗ gz − [b̃/(2π)]GZ ⊗ gθ . (3.14)

It follows from (3.11) and (3.13) that

F−1 = b̃rH(−x)δ(y)GZ ⊗ gθ + F E−1 = [b̃rH(−x)δ(y)GZ ⊗ (F E Tgθ ) + 1]F E−1 . (3.15)

In the reference configuration, the image of the slipped surface S0 is (X < 0, Y = 0), on which r(R) and θ(Θ) are
continuous, but Z(θ, z) is discontinuous. Let m denote a normal to S directed from Θ = −π to Θ = +π:

m(r,R) = −rgθ · F E = −rGΘ = −(1/R)gθ = −(r/R)eθ on S. (3.16)

The plastic part of (3.15) is the simple shear

F P−1(x) = 1 − H(−x)δ(y)b̃ ⊗ m, F P(X) = 1 + H(−X)δ(Y )b̃ ⊗ m. (3.17)

Since b̃ ·m = −(b̃r/R)ez ·eθ = 0, slip is isochoric: det F P = 1. Integration of F P over a rectangular volume V traversed
by S0 produces, with the approximation r/R ≈ 1,

(1/V )
∫

V

F PdV ≈ 1 + V −1 b̃ ⊗ m

∫
V

H(−X)δ(Y )dXdY dZ = 1 + γs ⊗ m, (3.18)

where γ = b̃A/V is shear in direction s = gz due to slip over area A =
∫

H(−X)dXdZ. From the above description,

F (X) = F E ∀X ∈ B0\S0 , F (X) = F EF P on S0 ;

F−1(x) = F E−1 ∀x ∈ B\S, F−1(x) = F P−1F E−1 on S. (3.19)

It becomes prudent to select coincident cylindrical coordinate systems on B̃ and B0 , such that gα (X) = δA
α GA (X) [15],

and in these coordinates

F E = F E a
�αga ⊗ gα = F E a

�Aga ⊗ GA , F E a
�A (X) = ∂Axa(X) ∀X ∈ B0\S0 . (3.20)

The dislocation density tensor can now be computed. In Cartesian coordinates, using (3.5),

F−1Z
�x = b̃y/(2πr2), F−1Z

�y = −b̃[x/(2πr2) + H(−x)δ(y)]. (3.21)
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Decomposing this into continuous and singular parts,

F E−1Z
�x = b̃y/(2πr2), F E−1Z

�y = −b̃x/(2πr2), F P−1Z
�y = −b̃H(−x)δ(y). (3.22)

The only non-vanishing component of true dislocation density is, from (2.43) and (3.6),

α̃Z z = εzbc∂cF
E−1Z

�b = ∂yF E−1Z
�x − ∂xF E−1Z

�y = [b̃/(2π)][∂y (y/r2) + ∂x(x/r2)] = b̃δ(r). (3.23)

Therefore,

α̃αα = b̃δ(r)GZ ⊗ gz = δ(r)b̃ ⊗ ξξξ. (3.24)

Consider a closed loop c encircling the dislocation line; area a enclosed by this loop has constant normal vector n = gz = ξξξ.
Applying Stokes’s theorem, consistency with (2.44) with F E = F L is demonstrated:

b̃ =
∫

a

δ(r)b̃〈ξξξ,n〉rdrdθ = −
∫

a

(∇× F E−1)nda

= −
∮

c

F E−1dx = −
∮

c

F E−1Z
�θGZ dθ =

b̃

2π

∮
c

dθ = b̃. (3.25)

The second of (2.9) can be verified by taking the curl, in the sense of a generalized derivative [39], of (3.15):

−∇× (F−1) = −∇× (F E−1) + ∇× [H(−x)δ(y)b̃ ⊗ m] = α̃αα − δ(−x)δ(y)b̃ ⊗ gz = 0. (3.26)

3.2 Nonlinear elastic analysis and general solution

A nonlinear elastic boundary value problem for the screw dislocation is constructed as follows. Let body B consist of a
cylinder of outer radius R0 with the dislocation line located along r = 0. A cylindrical core region r < r0 is removed from
the body and excluded from the solution domain. The length of the cylinder is L, such that the body is contained within the
limits − L

2 ≤ z ≤ L
2 , though the forthcoming analysis also applies for the case L → ∞. Slip plane S now consists of the

two-sided flat region (θ = ±π, r0 < r < R0). Body B is multiply connected when it contains the slip plane (i.e., when
it is treated as an annular tube) since θ is multi-valued. Domain B\S is simply connected, as is its image in the reference
configuration B0\S0 .

Equilibrium equations are solved on B\S. From (3.19), in this domain the strain energy function in (2.53) becomes

W = W (F ) = Ŵ [D(F )] = W̄ [E(F )]. (3.27)

As defined in Appendix C (See Supplementary Material, Wiley online library), Eulerian and Lagrangian strain measures
(both referred to material coordinates {XA}) are, respectively,

D = 1
2 (1 − F−1F−T), E = 1

2 (F TF − 1). (3.28)

Cauchy stress is, from (C.6),

σσσ = J−1PF T = J−1F−TŜF−1 = J−1F S̄F T, (3.29)

where

P = ∂W/∂F , Ŝ = ∂Ŵ/∂D, S̄ = ∂W̄/∂E. (3.30)

Static equilibrium equations are

∇ · σσσ = 0, ∇bσ
ab = 0. (3.31)

Internal boundary conditions are

�u� = b̃ on S; t|r=r0 = σσσn = p̃er ⇒ σrr |r=r0 = −p̃. (3.32)

The first of (3.32) prescribes a displacement jump equal to the true Burgers vector across the slip plane, as in (3.9). The
second of (3.32) assigns a traction t at the core surface corresponding to a constant radial Cauchy pressure p̃, with er a unit
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vector in the radial direction as defined in Appendix A (See Supplementary Material, Wiley online library). Traction along
the core must be a uniform pressure to maintain consistency with the symmetry inherent in ansatz (3.1). External boundary
conditions are

t|r=R0 = 0;

(∫ R0

r0

tz rdrdθ

)∣∣∣
z=±L/2

= 0 or s(z) → 0 as L → ∞. (3.33)

The first of (3.33) prescribes traction free conditions on the surface of the cylinder at r = R0 . The second of (3.33)
prescribes either null average axial force for a cylinder of finite length, or no average axial strain for an infinite cylinder.

An iterative solution procedure in Eulerian coordinates is invoked, similar to that of Teodosiu and Sóos [81, 82]. The
primary difference between the present isotropic nonlinear elastic analysis of the screw dislocation and that in [81] is
that here a different (Eulerian) strain energy potential Ŵ is used, in contrast to the Lagrangian strain energy potential
W̄ used in [81, 82]. A second difference is that possible axial strains are considered for a dislocation of finite length, in
contrast to [81] that considered only the infinitely long dislocation and imposed s = 0. In an earlier analysis of the screw
dislocation in isotropic nonlinear elasticity, Seeger and Mann [72] used an iterative procedure in Lagrangian coordinates,
with a Lagrangian strain energy function, and allowed for axial strain, but did not address core pressure. The general method
of solution in Lagrangian coordinates was described formally by Gairola [38].

According to the method of solution [81, 82], spatial displacement u is written in the series

u(x) = ku0(x) + k2u1(x) + · · · , (3.34)

where k > 0 is a small scalar parameter whose particular value will not affect the final solution. Internal boundary condi-
tions are of the assumed form

b̃ = kb, p̃ = kp, (3.35)

which is justified by the vanishing of b̃ with p̃ [81, 82]. Truncating (3.34) at second order4 [i.e., omitting terms of O(k3)]
and prescribing a strain energy potential of either of the latter two forms in (3.27) results in a series expression for Cauchy
stress:

σσσ = kσσσ0 + k2(σσσ1 + τττ), σab
0 = Cabcd∇c(u0)d , σab

1 = Cabcd∇c(u1)d , (3.36)

where Cabcd are second-order elastic constants (equivalent to those introduced in Appendix C (See Supplementary Material,
Wiley online library)), and where τττ depends on ∇u0 and second- and third-order elastic constants. Substituting into (3.31),
two sets of equilibrium equations result:

∇ · σσσ0 = 0, ∇ · σσσ1 = −∇ · τττ . (3.37)

The first of these equations is solved in conjunction with internal boundary conditions linear in k, i.e., (3.35), providing a
solution for u0 . The second of these equations is then solved for u1 , applying continuity of u1 across S and null traction at
r = r0 , along with the previously obtained solution for u0 to be used to compute τττ . For both solutions, vanishing traction
at r = R0 is imposed.

The general method of solution is now applied to the screw dislocation, where Ŵ (D) is used for the strain energy
potential, making the present analysis and results different from others mentioned already [38,72,81]. Displacement (3.34)
applied to (3.8) results in

u(r) = ku0(r) + k2u1(r), w(ϕ) = kw0(ϕ) = kbϕ/(2π), s(z) = ks0(z) + k2s1(z), (3.38)

where w is necessarily truncated at first order to satisfy (3.7) and (3.35), with

b̃ = kbGZ , b̃ = kb. (3.39)

With respect to curvilinear cylindrical bases {GA , ga}, the inverse deformation gradient matrix on B\S is

[F−1A
�a ] =

⎡
⎢⎣R′ 0 0

0 Θ′ 0
0 ∂θZ ∂zZ

⎤
⎥⎦ =

⎡
⎢⎣1 − ku′

0 − k2u′
1 0 0

0 1 0
0 −kb/(2π) 1 − ks′0 − k2s′1

⎤
⎥⎦ . (3.40)

4 Incorporation of terms cubic in k would result in a problem depending on fourth-order elastic constants, which cannot be measured completely, and
are usually unknown for real crystals.
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As remarked already, the domain of analysis excludes the core and slip plane and thereby avoids singularities and consider-
ation of F P. In physical components, i.e., orthonormal bases {ea ,EA}, (A.36) becomes, for the isolated screw dislocation,

[F−1
〈Aa〉] =

⎡
⎢⎣1 − ku′

0 − k2u′
1 0 0

0 1 − ku0/r − k2u1/r 0
0 −kb/(2πr) 1 − ks′0 − k2s′1

⎤
⎥⎦ , (3.41)

noting that
√

G/g = R/r = 1 − u/r. Henceforth, such physical components will be used for analysis of the screw
dislocation. Volume ratio is

J−1 = det[F−1
〈Aa〉] = (1 − ku′

0 − k2u′
1)(1 − ku0/r − k2u1/r)(1 − ks′0 − k2s′1)

= 1 − k(u′
0 + u0/r + s′0) + O(k2). (3.42)

The next step is computation of components of strain tensor D in terms of the quantities (k, b, u′, u/r, s′). Subsequent alge-
bra becomes analytically intractable when all such quantities are retained in the general solution. Therefore, two particular
cases are considered in what follows:

p = 0 ⇒ s0 = 0; or L → ∞ ⇒ s = 0. (3.43)

The first case is consistent with a priori knowledge that in the linear elastic solution of a screw dislocation, axial strain
vanishes when core pressure vanishes5. This is the Eulerian analog of the form of Lagrangian displacement function s(Z)
assumed by Seeger and Mann [72]. The second case in (3.43) is consistent with the second set of boundary conditions in
(3.33), and leads to the condition that all displacements are independent of z, as should be the case for an infinitely long
dislocation line. Therefore,

s(z) = k2s1(z) (3.44)

is used, with s1 = 0 invoked when boundary conditions corresponding to the second case are imposed.
In physical cylindrical components, strain tensor D is, from (3.28) and (3.41),

D = DRRER ⊗ ER + DΘΘEΘ ⊗ EΘ + DZZ EZ ⊗ EZ + DΘZ (EΘ ⊗ EZ + EZ ⊗ EΘ); (3.45)

DRR = ku′
0 + k2(u′

1 − 1
2 u′2

0 ), DΘΘ = ku0/r + k2 [u1/r − 1
2 (u0/r)2 ],

DZZ = k2 [s′1 − b2/(8π2r2)], DΘZ = DZΘ = kb/(4πr) − k2bu0/(4πr2), (3.46)

where terms O(k3) have been truncated. Strain energy potential per unit reference volume (C.7) is used, truncated at third
order:

Ŵ = 1
2 CABC D DAB DC D + 1

6 ĈABC DEF DAB DC D DEF

= 1
2 Cαβ DαDβ + 1

6 Ĉαβγ DαDβ Dγ , (3.47)

where Greek subscripts denote Voigt notation. For an isotropic material, second-order constants Cαβ depend on (λ, μ) from
(C.11), and third-order constants Ĉαβγ depend on (ν̂1 , ν̂2 , ν̂3) from (C.12). Stress Ŝ = ∂Ŵ/∂D is, omitting terms of
O(k3),

Ŝ = ŜRRER ⊗ ER + ŜΘΘEΘ ⊗ EΘ + ŜZZ EZ ⊗ EZ + ŜΘZ (EΘ ⊗ EZ + EZ ⊗ EΘ); (3.48)

ŜRR = k{(λ + 2μ)u′
0 + λu0/r}

+ k2{(λ + 2μ)(u′
1 − u′2

0 /2) + λ[u1/r − 1
2 (u0/r)2 + s′1 − b2/(8π2r2)]

+ 1
2 (ν̂1 + 6ν̂2 + 8ν̂3)u′2

0 + (ν̂1 + 2ν̂2)[ 1
2 (u0/r)2 + u′

0u0/r] + ν̂2b
2/(8π2r2)}, (3.49)

ŜΘΘ = k{(λ + 2μ)u0/r + λu′
0}

+ k2{(λ + 2μ)[u1/r − 1
2 (u0/r)2 ] + λ[u′

1 − u′2
0 /2 + s′1 − b2/(8π2r2)]

+ 1
2 (ν̂1 + 6ν̂2 + 8ν̂3)(u0/r)2 + (ν̂1 + 2ν̂2)(u′2

0 /2 + u′
0u0/r)

+ (ν̂2 + 2ν̂3)b2/(8π2r2)}, (3.50)

5 It will be shown explicitly later how positive core pressure p is linearly proportional to axial contraction in the linear solution.
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ŜZZ = k{λ(u′
0 + u0/r)}

+ k2{(λ + 2μ)[s′1 − b2/(8π2r2)] + λ[u′
1 + u1/r − u′2

0 /2 − 1
2 (u0/r)2 ]

+ 1
2 (ν̂1 + 2ν̂2)[u′2

0 + (u0/r)2 ] + ν̂1u
′
0u0/r + (ν̂2 + 2ν̂3)b2/(8π2r2)}, (3.51)

ŜΘZ = ŜZΘ = k{μb/(2πr)} − k2{μbu0/(2πr2)}. (3.52)

Using (3.41) and (3.42), Cauchy stress σσσ = J−1F−TŜF−1 is, omitting terms of O(k3),

σσσ = σrrer ⊗ er + σθθeθ ⊗ eθ + σzzez ⊗ ez + σθz (eθ ⊗ ez + ez ⊗ eθ ); (3.53)

σrr = k{(λ + 2μ)u′
0 + λu0/r}

+ k2{(λ + 2μ)u′
1 + λ(u1/r + s′1) − 1

2 (7λ + 14μ − ν̂1 − 6ν̂2 − 8ν̂3)u′2
0

− (4λ + 2μ − ν̂1 − 2ν̂2)u′
0u0/r − 1

2 (3λ − ν̂1 − 2ν̂2)(u0/r)2

− (λ − ν̂2)b2/(8π2r2)}, (3.54)

σθθ = k{(λ + 2μ)u0/r + λu′
0}

+ k2{(λ + 2μ)u1/r + λ(u′
1 + s′1) − 1

2 (3λ − ν̂1 − 2ν̂2)u′2
0

− (4λ + 2μ − ν̂1 − 2ν̂2)u′
0u0/r − 1

2 (7λ + 14μ − ν̂1 − 6ν̂2 − 8ν̂3)(u0/r)2

− (λ + 2μ − ν̂2 − 2ν̂3)b2/(8π2r2)}, (3.55)

σzz = k{λ(u′
0 + u0/r)}

+ k2{λ(u′
1 + u1/r) + (λ + 2μ)s′1 − 1

2 (3λ − ν̂1 − 2ν̂2)u′2
0

− (2λ − ν̂1)u′
0u0/r − 1

2 (3λ − ν̂1 − 2ν̂2)(u0/r)2

− (λ + 4μ − ν̂2 − 2ν̂3)b2/(8π2r2)}, (3.56)

σθz = σzθ = k{μb/(2πr)} − k2{(λ + μ)bu′
0/(2πr) + (λ + 4μ)bu0/(2πr2)}. (3.57)

These are consistent with (3.36). From symmetry of Cauchy stress, applying (A.39) in spatial components, equilibrium
equations ∇ · σσσ = 0 reduce to

∂rσrr + (σrr − σθθ )/r = 0, ∂θσθθ/r + ∂zσθz = 0, ∂θσθz /r + ∂zσzz = 0. (3.58)

First consider equilibrium conditions corresponding to stress components linear in k, i.e., the first of (3.37), where

σσσ0(r) = [(λ + 2μ)u′
0 + λu0/r]er ⊗ er + [(λ + 2μ)u0/r + λu′

0 ]eθ ⊗ eθ

+ [λ(u′
0 + u0/r)]ez ⊗ ez + [μb/(2πr)](eθ ⊗ ez + ez ⊗ eθ ). (3.59)

Since σσσ0 does not depend on θ or z, the second and third equilibrium equations in (3.58) are trivially satisfied to first order
in k. The first order radial equilibrium equation becomes

(λ + 2μ)(u′′
0 + λu′

0/r − u0/r2) = 0. (3.60)

This is a homogeneous second-order ordinary differential equation of Cauchy-Euler type, with general solution

u0 = c1r + c2/r. (3.61)

Applying boundary conditions (σ0)rr |r=r0 = −p and (σ0)rr |r=R0 = 0, the solution is

c1 = χ(1 − 2ν), c2 = χR2
0 , χ = [p/(2μ)][r2

0/(R2
0 − r2

0 )], (3.62)
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with Poisson’s ratio ν defined in (C.14). With u0 now known, all components of σσσ0 can be found using (3.59). To first
order in k, radial displacement, radial stress, circumferential stress, and axial stress vanish if core pressure is omitted
(χ = 0), whereby the solution degenerates to the usual anti-plane shear description of a screw dislocation in isotropic
linear elasticity. It was assumed in (3.44) that s0(z) = 0. If this restriction is relaxed in the linear solution, then the axial
equilibrium equation yields (λ + 2μ)s′′0 = 0 ⇒ s0 = c3z. If the average axial stress (σ0)zz is set to zero over any cross
section of the cylinder at constant z, then s0 = −2[ν(1− 2ν)/(1− ν)]χz is the axial contraction that occurs in conjunction
with positive core pressure for ν > 0. Since s0 = 0 when χ = 0, the first assumption in (3.43) is now verified.

Now consider equilibrium equations for stress components quadratic in k, i.e., the second of (3.37). From (3.54)–(3.57),

σσσ1(r, z) = [(λ + 2μ)u′
1 + λ(u1/r + s′1)]er ⊗ er + [(λ + 2μ)u1/r + λ(u′

1 + s′1)]eθ ⊗ eθ

+ [(λ + 2μ)s′1 + λ(u′
1 + u1/r)]ez ⊗ ez , (3.63)

τττ(r) = {χ2(1 − 2ν)2(−9λ − 9μ + 2ν̂1 + 6ν̂2 + 4ν̂3)

+ (1/r2)[χ2R2
0(1 − 2ν)(4λ + 14μ − 4ν̂2 − 8ν̂3) − (λ − ν̂2)b2/(8π2)]

+ (1/r4)[χ2R4
0(−λ − 5μ + 2ν̂2 + 4ν̂3)]}er ⊗ er

+ {χ2(1 − 2ν)2(−9λ − 9μ + 2ν̂1 + 6ν̂2 + 4ν̂3)

+ (1/r2)[χ2R2
0(1 − 2ν)(−4λ − 14μ + 4ν̂2 + 8ν̂3)

− (λ + 2μ − ν̂2 − 2ν̂3)b2/(8π2)]

+ (1/r4)[χ2R4
0(−λ − 5μ + 2ν̂2 + 4ν̂3)]}eθ ⊗ eθ

+ {χ2(1 − 2ν)2(−5λ + 2ν̂1 + 2ν̂2) + (1/r2)[(−λ − 4μ + ν̂2 + 2ν̂3)b2/(8π2)]

+ (1/r4)[χ2R4
0(−λ + 2ν̂2)]}ez ⊗ ez

− {(1/r)[(1 − 2ν)(2λ + 5μ)bχ/(2π)]

+ (1/r3)[3μbχR2
0/(2π)]}(eθ ⊗ ez + ez ⊗ eθ ). (3.64)

The radial component of second-order equilibrium equation in (3.37) is

∂r (σ1 + τ)rr + [(σ1 + τ)rr − (σ1 + τ)θθ ]/r = 0. (3.65)

Substituting from (3.63) and (3.64), this becomes an inhomogeneous second-order ordinary differential equation of Cauchy-
Euler type:

(λ + 2μ)(u′′
1 + u′

1/r − u1/r2) = (1/r3)(ν̂2 + ν̂3 − λ − μ)b2/(4π2)

+ (1/r5)(2ν̂2 + 4ν̂3 − λ − 5μ)4χ2R4
0 . (3.66)

The homogeneous general solution to this equation is of the form u1H = C1r + C2/r. The particular solution u1P can be
found using Lagrange’s method (i.e., variation of parameters). The total general solution is the sum u1 = u1H + u1P:

u1(r) = C1r +
C2

r
+

b2(λ + μ − ν̂2 − ν̂3)
8π2(λ + 2μ)

ln r

r
+

χ2R4
0(2ν̂2 + 4ν̂3 − λ − 5μ)

2(λ + 2μ)r3 . (3.67)

Consistent with previous arguments, applying vanishing second-order traction end conditions (σ1)rr = −τrr at r = r0 and
r = R0 gives

C1 =
b2

8π2

[
μ(λ + μ − ν̂2 − ν̂3)
(λ + μ)(λ + 2μ)

ln(R0/r0)
R2

0 − r2
0

]
− νs′1

+
χ2μ

2(λ + μ)2 [(1 − 2ν)(9λ + 9μ − 2ν̂1 − 6ν̂2 − 4ν̂3)

+ 2(λ + 5μ − 2ν̂2 − 4ν̂3)(R2
0/r2

0 )], (3.68)
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C2 =
b2

8π2

[
ν̂2 − λ

2μ
+ (λ + μ − ν̂2 − ν̂3)

(
1
2μ

+
r2
0 ln R0 − R2

0 ln r0

(λ + 2μ)(R2
0 − r2

0 )

)]

+ χ2R2
0

[
(1 − 2ν)(4λ + 14μ − 4ν̂2 − 8ν̂3)

2μ
+

(λ + 5μ − 2ν̂2 − 4ν̂3)(R2
0 + r2

0 )
2(λ + 2μ)r2

0

]
. (3.69)

Since σσσ1 and τττ do not depend on θ and since (σ1)θz = τθz = 0, the second-order circumferential equilibrium equation in
(3.58) is trivially satisfied. The second-order (i.e., proportional to k2) axial equilibrium equation is

∂z [(σ1)zz + τzz ] = 0 ⇒ (λ + 2μ)s′′1 = 0. (3.70)

Its general solution is, upon imposing s1(0) = 0 to fix translational invariance,

s1 = C3z. (3.71)

Therefore, s′1 = C3 = constant, and Cauchy stress is of the form σσσ = σσσ(r). For an infinite dislocation line (L → ∞),
the second of (3.43) requires C3 = 0. For the first condition in (3.43), corresponding to a dislocation of finite length with
p = 0, applying the null axial force condition over any cross section normal to the dislocation line:

∫ π

−π

∫ R0

r0

[(σ1)zz + τzz ]rdrdθ = 0 (3.72)

results in an algebraic equation for C3 that yields

C3 =
b2

4π2

[
ln(R0/r0)
R2

0 − r2
0

] [
λ + μ

μ(3λ + 2μ)

]

×
[

λ(ν̂2 + ν̂3 − λ − μ)
λ + 2μ

+ λ + 4μ − ν̂2 − 2ν̂3 −
λμ(λ + μ − ν̂2 − ν̂3)

(λ + μ)(λ + 2μ)

]
. (3.73)

Recall that (σ0)zz = 0 when p = 0, so that the total axial force from terms proportional to k and k2 vanishes in this case as
well. Since s′1 = C3 , solutions for C1 and C2 are complete and u1 (3.67) is fully known, as is second-order Cauchy stress
σσσ1 in (3.63).

Combining first- and second-order solutions for displacement, (3.38) becomes

u(r) = k

[
χ(1 − 2ν)r +

χR2
0

r

]

+ k2
[
C1r +

C2

r
+

b2(λ + μ − ν̂2 − ν̂3)
8π2(λ + 2μ)

ln r

r
+

χ2R4
0(2ν̂2 + 4ν̂3 − λ − 5μ)

2(λ + 2μ)r3

]
; (3.74)

w(θ) = kbθ/(2π), θ ∈ (−π, π); (3.75)

s(z) = k2C3z. (3.76)

Recall from (3.35) that kb = b̃ and kp = p̃, and from (3.62) that χ ∝ p. All terms in the solution linear in k are proportional
to b or χ. All terms in the solution quadratic in k are proportional to b2 or χ2 . Therefore, k does not affect the final solution.

Combining first- and second-order solutions for Cauchy stress, (3.36) becomes

σσσ(r) = kσσσ0(r) + k2 [σσσ1(r) + τττ(r)], (3.77)

where σσσ0 is given by (3.59) with all terms linear in b or χ, and σσσ1 and τττ are given by (3.63) and (3.64), respectively, with
all terms quadratic in b or χ or bilinear in bχ.

Strain energy per unit reference volume Ŵ of (3.47) can be written

Ŵ = 1
2 k2σσσ0 : D0 + k3σσσ0 : D1 + 1

6 k3ĈABC DEF D0 AB D0 C D D0 EF + O(k4), (3.78)

where D0 is the first-order (linear in k) part of strain in (3.45):

D0 = u′
0ER ⊗ ER + (u0/r)EΘ ⊗ EΘ + [b/(4πr)](EΘ ⊗ EZ + EZ ⊗ EΘ), . (3.79)
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and k2D1 = D − kD0 is the second-order part of strain. Considered here is the infinitely extended dislocation line. The
first term in (3.78) is computed as

1
2 σσσ0 : D0 = μb2/(8π2r2) + 2μχ2 [(1 − 2ν) + R4

0/r4 ]. (3.80)

Assuming contributions from higher-order products of radial displacement and its derivatives are small compared to those
involving shear, second and third terms are

σσσ0 : D1 ≈ −μb2χ(1 + R2
0/r2)/(4π2r2), (3.81)

1
6 ĈABC DEF D0 AB D0 C D D0 EF ≈ b2χ

4π2r2

[
(1 − 2ν)(ν̂2 + ν̂3) + ν̂3

R2
0

r2

]
. (3.82)

Strain energy per unit current volume is Ŵ/J where J−1 is given by (3.42); integrating this over the cross section gives
the energy per unit length Ψ, where χ̃ = kχ:

Ψ =
∫ θ=π

θ=−π

∫ r=R0

r=r0

J−1Ŵ rdrdθ

≈ b̃2

4π
ln

R0

r0
{μ[1 − 2χ̃(1 − 2ν)] + 2χ̃(1 − 2ν)(ν̂2 + ν̂3 − λ − μ)}

+ 2πχ̃2(R2
0 − r2

0 )(1 − 2ν)2(λ + μ)[1 − 2χ̃(1 − 2ν)]

+ 2πχ̃(R2
0/r2

0 − 1){b2(ν̂3 − μ)/(8π2) + χ̃μR2
0 [1 − 2χ̃(1 − 2ν)]}. (3.83)

The linear elastic energy per unit length is recovered by setting b̃2 χ̃, χ̃3 → 0; when core pressure vanishes, this linear
solution is the conventional Ψ = [μb̃2/(4π)] ln(R0/r0).

3.3 Solution for ideal crystal with Cauchy symmetry

The complete solution depends on 9 parameters: geometric constants (b̃, r0 , R0), elastic constants (λ, μ, ν̂1 , ν̂2 , ν̂3), and
core boundary condition p̃. The solution is further examined for a reduced set of parameters. Choosing b̃ = r0 [56], the
geometry and core pressure become respective functions of dimensionless parameters Λ and p0 :

Λ = R0/r0 = R0/b̃ > 1, p0 = p̃/K. (3.84)

Imposing Cauchy symmetry on the elastic constants, which is a physically reasonable assumption for alkali metals and ionic
crystals such as the alkali halides [40], produces relations (C.20) and (C.22) of Appendix C (See Supplementary Material,
Wiley online library). The number of elastic constants is now two, the linear bulk modulus K and pressure derivative of
tangent bulk modulus K ′ = B′

0 :

λ = μ = 3
5 K, ν̂1 = − 9K

35 K ′, ν̂2 = −K
5 ( 9

7 K ′ − 6), ν̂3 = −K
5 ( 9

7 K ′ − 9). (3.85)

Thus ν = 1
4 and all other elastic constants are proportional to K. Typical values for K ′ in natural crystalline solids are

2 < K ′ < 7 [45], with K ′ ≈ 4 a common approximation if high pressure data are unavailable. The reduced set of
5 parameters entering the solution is now (b̃,Λ, p0 ,K,K ′). Noting that χ = 5

6 p0/(Λ2 − 1) and that all coefficients of
displacement depend only on dimensionless ratios of elastic constants, normalized displacement u/b̃ depends only the set
of 3 parameters (Λ, p0 ,K

′). Since stress components and strain energy are linearly proportional to an elastic constant,
dimensionless stress and energy σσσ/K and Ψ/K also depend only on this set. It was verified that the dimensionless solution
does not depend on b̃ or its units.

Normalized radial displacement u/r0 = u/b̃ is shown versus Eulerian radial coordinate r in Fig. 1. In this and all
later plots of results versus radial coordinate, the abscissa begins at its minimum valid value r/r0 = 1. The effect of core
pressure is shown in Fig. 1(a) for a fixed cylinder size of Λ = R0/r0 = 100: dilatation (i.e., radial expansion) increases
with increasing p0 but decreases rapidly with increasing r. The effect of nonlinear elastic constant K ′ is shown in Fig. 1(b)
for a fixed core pressure p0 = 0.1 and and an infinitely long dislocation, i.e., fixed ends (C3 = 0): dilatation increases
with increasing K ′. The effect of K ′ is shown in Fig. 1(c) for null core pressure but average free axial conditions (3.72):
dilatation increases in magnitude with increasing K ′, is positive for K ′ > 4, and is negative for K ′ < 4. Values of C3
computed from (3.73) are shown in the legend; recall that C3 > 0 corresponds to axial extension, while C3 < 0 corresponds
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(a) (b)

(c) (d)

Fig. 1 Total radial displacement for screw dislocation: (a) variable core pressure p0 (b) variable K ′, p0 = 0.1 (c) variable
K ′, p0 = 0 (d) variable cylinder size R0 = Λr0 .

to axial contraction. For K ′ = 4, u ≈ 0 for r > r0 , suggesting that core pressure rather than elastic nonlinearity may be the
primary contributor to dilatation in a typical crystalline solid. Recall in the linear elastic solution p0 = 0 ⇒ u0 = 0. The
effect of cylinder size R0 is shown in Fig. 1(d): for Λ ≥ 100, radial displacements are indistinguishable, while for Λ ≤ 10,
increased dilatation is observed since the free surface is closer to the core.

Normalized Cauchy stress field σσσ/K is shown in Fig. 2 for Λ = 100 and K ′ = 4. Radial stress is shown in Fig. 2(a);
the vertical axis is truncated at σrr = −0.5K since σrr = −Kp0 at r = r0 . Maximum magnitudes at r = r0 are on the
order of |p0 |. Radial and circumferential stress components are of opposite sign and decay rapidly within r � 15r0 . Axial
components are negative close to the core and slightly positive farther away from the core, and decrease rapidly within
r � 5r0 . All stresses converge towards a single curve for each component for r � 20r0 that corresponds to the linear
elastic solution with vanishing core pressure. For large r, normal stresses decay to zero and shear stress σθz [Fig. 2(d)] is
proportional to 1/r.

Nonlinear and linear solutions for stress and energy per unit length are compared in Fig. 3 and Table 1, respectively.
Stress components shown in Fig. 3 correspond to fixed parameters Λ = 100, p0 = 0.1 (linear and nonlinear) and K ′ = 4
(nonlinear). Radial and circumferential stresses obtained from the nonlinear solution are nearly indistinguishable from
corresponding stresses from the linear solution. Axial stress is negative and larger in magnitude for the nonlinear solution
compared to the linear solution for r < 4r0 . Shear stress is of the same positive sign but smaller in magnitude for the

Table 1 Strain energy Ψ/(πR2
0K) × 105 for screw dislocation, Λ = 100.

p0 K ′ = 0 K ′ = 2 K ′ = 4 K ′ = 6 K ′ = 8 linear

1.0 0.929 0.918 0.906 0.896 0.885 0.903

0.1 0.809 0.798 0.787 0.776 0.765 0.783

0.0 0.700 0.700 0.700 0.700 0.700 0.700

-0.1 0.758 0.769 0.780 0.791 0.801 0.783
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(a) (b)

(c) (d)

Fig. 2 Cauchy stress field for screw dislocation with K ′ = 4 and Λ = 100: (a) radial stress (b) circumferential stress (c)
axial stress (d) shear stress.

Fig. 3 Comparison of nonlinear and linear elastic solutions for stress field of screw dislocation with Λ = 100, p0 = 0.1
and K ′ = 4.

nonlinear solution for r < 4r0 . The total stress field from the nonlinear solution becomes indistinguishable from the linear
solution for r � 10r0 . Solutions for normalized strain energy in Table 1 are obtained using (3.83), where terms ∝ k3 are
omitted in the linear solution. For p0 = 0, K ′ does not affect the solution, and nonlinear and linear predictions coincide.
For other values of core pressure, energy predicted using the nonlinear solution may exceed the linear solution depending
on the value of K ′.
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4 Wedge disclination

4.1 Geometric description

Consider a deformed body B with boundary ∂B. In the reference configuration, the image of this body and its boundary are
B0 and ∂B0 . Notation for cylindrical and Cartesian coordinate systems is the same as that used in Sect. 3 and Appendix A
(See Supplementary Material, Wiley online library).

An Eulerian description of deformation is invoked, similar to that of Vladimirov et al. [86], though a different strain
energy potential and core boundary conditions will be used here. Let the unit tangent line of the disclination be oriented
along the z-axis, i.e., ξξξ = gz . The general ansatz for deformation due to a wedge disclination in an isotropic body is

R(r) = r − u(r), Θ(θ) = θ − ω̂ϕ/(2π), Z(z) = z − s(z). (4.1)

Radial displacement is u(r), and ω̂ is a constant associated with the Frank vector. When ω̂ > 0, the wedge disclination is
labeled “positive”, corresponding to removal of a wedge of material and tensile circumferential stress. When ω̂ < 0, the
disclination is “negative”, corresponding to insertion of a wedge of material and compressive circumferential stress. Angle
θ is multi-valued upon complete revolutions around the disclination line, and ϕ ∈ (−π, π) is defined in (3.2). Surface S,
where Θ(θ) is discontinuous, corresponds to the half-plane (y = 0, x < 0), or θ = ±π. On B\S, the second of (4.1) can
be inverted to θ = κΘ, where κ = 2π/(2π − ω̂).

Displacement u = x − X in (A.38) in physical curvilinear basis {ea(θ)} is

u = {r − (r − u) cos[ω̂ϕ/(2π)]}er + {(r − u) sin[ω̂ϕ/(2π)]}eθ + sez . (4.2)

Displacement is continuous except for that due to the jump in ϕ across S:

�Θ� = Θ|θ=π − Θ|θ=−π = −ω̂, (4.3)

�u� = u|θ=π − u|θ=−π = (u − r){�cos[ω̂ϕ/(2π)]�er − �sin[ω̂ϕ/(2π)]�eθ}. (4.4)

For small u and small ω̂, this reduces to the usual approximation �u� ≈ rω̂eθ [14, 32].
In curvilinear coordinates, the inverse deformation gradient from (4.1) is

F−1 = F−1R
�r GR ⊗ gr + F−1Θ

�θ GΘ ⊗ gθ + F−1Z
�z GZ ⊗ gz

= (dR/dr)GR ⊗ gr + [1 − ω̂∂θϕ/(2π)]GΘ ⊗ gθ + (dZ/dz)GZ ⊗ gz

= [1 − u′(r)]GR ⊗ gr + [1 − ω̂∂θϕ/(2π)]GΘ ⊗ gθ + [1 − s′(z)]GZ ⊗ gz . (4.5)

Applying the generalized derivative from (3.5),

F−1Θ
�θ = 1 − [ω̂/(2π)][−r sin θ∂xϕ + r cos θ∂yϕ] = 1 − ω̂/(2π) + ω̂rH(−x)δ(y). (4.6)

Define the function w(θ) and its derivative

w = ω̂θ/(2π), w′ = dw/dθ = ω̂/(2π). (4.7)

To fix translational invariance of the origin and ensure volume remains positive,

u(0) = 0, s(0) = 0; (1 − u/r)(1 − u′)(1 − w′)(1 − s′) > 0. (4.8)

Physically, constraint |ω̂| < 2π also applies.
The multiplicative decomposition of lattice deformation in the first of (2.46) is now applied:

F = F EF I, F−1 = F I−1F E−1 . (4.9)

The “elastic” part of F−1 is defined as that which, in curvilinear coordinates, is continuous and single-valued over B:

F E−1 = [1 − u′(r)]GR ⊗ gr + [1 − w′]GΘ ⊗ gθ + [1 − s′(z)]GZ ⊗ gz . (4.10)

It follows from (4.5), (4.6), and (4.9) that

F−1 = ω̂rH(−x)δ(y)GΘ ⊗ gθ + F E−1 . (4.11)
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Decomposition (4.9) implies existence of a locally unstressed intermediate configuration B̃ for each material element.
Selecting coincident cylindrical coordinate systems on B̃ and B0 , such that gα (X) = δA

α GA (X) [15], and solving for
F I−1Θ

�Θ = F−1Θ
�θ F Eθ

�Θ ,

F I−1 = {1 + [2πrω̂/(2π − ω̂)]H(−x)δ(y)}GΘ ⊗ GΘ . (4.12)

From the above description,

F−1(x) = F E−1 ∀x ∈ B\S, F−1(x) = F I−1F E−1 on S. (4.13)

These can be inverted for F (x). Since Θ(θ) is multi-valued across S, the referential image of S is not a single half-plane
as was the case for the screw dislocation in Sect. 3.

The disclination density is now considered. A spatial density tensor θθθ and Frank vector ω̂ωω of the following forms are
consistent with geometry of the problem:

θθθ = θzzgz ⊗ gz = ω̂δ(r)gz ⊗ gz = δ(r)ω̂ωω ⊗ ξξξ; ω̂ωω = ω̂gz . (4.14)

To complete the description of kinematics, variable Q entering the connection (2.19) is sought that yields (4.14) when used
in (2.28) and (2.30). From the second of (2.33), the only nonvanishing covariant components of curvature in are, in spatial
Cartesian coordinates,

R̂xyxy = R̂yxyx = −R̂xyyx = −R̂yxxy = −θzz . (4.15)

From (2.28),

R̂xyxy = 2(∇̂[xQy ][xy ] + T̂ ��a
xy Qa [xy ]) − Q��a

x[xQ|y |y ]a + Q��a
y [xQ|x|y ]a , (4.16)

with summation on index a and (·)[xy ] = 1
2 [(·)xy − (·)yx ]. Existence of a field Q that simultaneously obeys (4.14)–(4.16)

and all of (2.47) is unproven at present. However, the following approximation6 is known:

Q = ω̂H(−x)δ(y)(ey ⊗ ey ⊗ ex − ey ⊗ ex ⊗ ey ), (4.17)

Qyyx = −Qyxy = ω̂H(−x)δ(y). (4.18)

Then (4.16) becomes

R̂xyxy = ∂xQyxy − Q��y
yxQyxy ≈ ∂xQyxy = −ω̂δ(−x)δ(y) = −ω̂δ(r) = −θzz , (4.19)

where terms of O(ω̂2) have been omitted in the approximation, yielding a result consistent with (4.14) and (4.15). In the
linear approximation, the contribution to the local Burgers vector from the disclination is, with n = gz in (2.48):

db̂ = d−1εεε : (θθθn ⊗ x)da ≈ ω̂ωω × xda = rω̂δ(r)drdθgθ . (4.20)

Integral
∫

db̂ then vanishes identically for domain a with constant normal gz parallel to ξξξ when the disclination passes
through r = 0. But if the coordinate system is translated such that ξξξ intersects planar area a at coordinates (x0 =
r0 cos θ0 , y0 = r0 sin θ0), then the disclination density becomes θzz = ω̂δ(x − x0)δ(y − y0) and b̂ =

∫
db̂ = r0 ω̂eθ (θ0).

4.2 Nonlinear elastic analysis and general solution

A nonlinear elastic boundary value problem for the wedge disclination is constructed as follows. Let body B consist of a
cylinder of outer radius R0 with the disclination line located along r = 0. A cylindrical core region r < r0 is removed
from the body and excluded from the solution domain. The length of the cylinder is L, such that the body is contained
within the limits − L

2 ≤ z ≤ L
2 , though the forthcoming analysis also applies for the case L → ∞. Plane S now consists

of the two-sided flat region (θ = ±π, r0 < r < R0). Body B is multiply connected when it contains this plane (i.e.,
when it is treated as an annular tube), since θ is multi-valued. Body B\S is simply connected. Its image in the reference
configuration, B0\S0 , is simply connected when ω̂ ≥ 0, but contains an overlap of material across S0 when ω̂ < 0.

6 This approximation is not fully consistent with the second of (2.47) since T̂ ��y
xy = − 1

2 Q��y
y x does not vanish, leading to singular dislocation density

αy z = Q��y
y x on S. Similar artifacts exist in linear representations of discrete disclination lines [32]. The result is inconsequential here since the

elastic solution, which does not depend explicitly on the choice of Q, is sought only over B\S.
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The solution procedure parallels that of the screw dislocation of Sect. 3.2. Equilibrium equations are solved on B\S.
From (4.13), in this domain the strain energy function in (2.53) becomes

W = W (F ) = Ŵ [D(F )] = W̄ [E(F )], (4.21)

where Ŵ is used in the solution that follows. Equations (3.28)–(3.31) apply.
Internal boundary conditions are

�Θ� = −ω̂ on S; t|r=r0 = σσσn = p̃er ⇒ σrr |r=r0 = −p̃. (4.22)

The first of (4.22) prescribes a coordinate jump across the plane of discontinuity as given in (4.3). The second of (4.22)
assigns traction t at the core surface corresponding to constant radial Cauchy pressure p̃, with er a unit vector in the
radial direction. Traction along the core must be a uniform pressure to maintain consistency with symmetry in ansatz (4.1).
External boundary conditions are

t|r=R0 = 0;

(∫ R0

r0

tz rdrdθ

)∣∣∣
z=±L/2

= 0 or s(z) → 0 as L → ∞. (4.23)

The first of (4.23) prescribes traction free conditions on the surface of the cylinder at r = R0 . The second of (4.23)
prescribes either null average axial force for a cylinder of finite length, or no average axial strain for an infinite cylinder.

An iterative solution procedure in Eulerian coordinates is invoked, similar to that of Vladimirov et al. [86]. The primary
difference between the present isotropic nonlinear elastic analysis of the wedge disclination and that in [86] is that here
a different strain energy potential Ŵ is used. A second difference is that possible core pressure is considered, in contrast
to [86] that treated the core in a different way. Core pressure was omitted in prior linear solutions [30,32]. Equations (3.34),
(3.36), and (3.37) apply. Internal boundary conditions are of the assumed form

ω̂ωω = kωωω, p̃ = kp, (4.24)

which is justified by the vanishing of ω̂ωω with p̃. Displacement (3.34) applied to (4.1) and (4.7) results in

u(r) = ku0(r) + k2u1(r), w(θ) = kw0(θ) = kωθ/(2π), s(z) = ks0(z) + k2s1(z), (4.25)

where w is necessarily truncated at first order to satisfy the first of (4.22), with

ω̂ωω = kωgz , ω̂ = kω. (4.26)

With respect to curvilinear cylindrical bases {GA , ga}, the inverse deformation gradient matrix on B\S is

[F−1A
�a ] =

⎡
⎢⎣R′ 0 0

0 Θ′ 0
0 0 Z ′

⎤
⎥⎦ =

⎡
⎢⎣1 − ku′

0 − k2u′
1 0 0

0 1 − kw′
0 0

0 0 1 − ks′0 − k2s′1

⎤
⎥⎦ . (4.27)

In physical components, i.e., orthonormal bases {ea ,EA}, (A.36) becomes

[F−1
〈Aa〉] =

⎡
⎢⎣1 − ku′

0 − k2u′
1 0 0

0 (1 − ku0/r − k2u1/r)(1 − kw′
0) 0

0 0 1 − ks′0 − k2s′1

⎤
⎥⎦ , (4.28)

noting that
√

G/g = R/r = 1 − u/r. Volume ratio is

J−1 = (1 − ku′
0 − k2u′

1)(1 − ku0/r − k2u1/r)(1 − kw′
0)(1 − ks′0 − k2s′1)

= 1 − k(u′
0 + u0/r + w′

0 + s′0) + O(k2). (4.29)

In physical cylindrical components, strain tensor D is, from (3.28) and (4.28),

D = DRRER ⊗ ER + DΘΘEΘ ⊗ EΘ + DZZ EZ ⊗ EZ ; (4.30)
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DRR = ku′
0 + k2(u′

1 − 1
2 u′2

0 ), DZZ = ks′0 + k2(s′1 − 1
2 s′20 ),

DΘΘ = k(w′
0 + u0/r) + k2 [u1/r − 1

2 (u0/r)2 − 1
2 w′2

0 − 2w′
0u0/r], (4.31)

where terms O(k3) have been truncated. Strain energy potential per unit reference volume (C.7) is used, truncated at third
order, leading to (3.47) which also applies here. Stress Ŝ = ∂Ŵ/∂D is, omitting terms of O(k3),

Ŝ = ŜRRER ⊗ ER + ŜΘΘEΘ ⊗ EΘ + ŜZZ EZ ⊗ EZ ; (4.32)

ŜRR = k{(λ + 2μ)u′
0 + λ(u0/r + w′

0 + s′0)}

+ k2{(λ + 2μ)(u′
1 − u′2

0 /2) + λ(u1/r + s′1 − 1
2 [(u0/r)2 + w′2

0 + s′20 ] − 2w′
0u0/r)

+ 1
2 (ν̂1 + 6ν̂2 + 8ν̂3)u′2

0 + 1
2 (ν̂1 + 2ν̂2)[(w′

0 + u0/r)2 + s′20

+ 2u′
0(u0/r + w′

0 + s′0)] + ν̂1s
′
0(u0/r + w′

0)}, (4.33)

ŜΘΘ = k{(λ + 2μ)(w′
0 + u0/r) + λ(u′

0 + s′0)}

+ k2{(λ + 2μ)(u1/r − 1
2 [(u0/r)2 + w′2

0 ] − 2w′
0u0/r) + λ(u′

1 − u′2
0 /2 + s′1 − s′20 /2)

+ 1
2 (ν̂1 + 6ν̂2 + 8ν̂3)(w′

0 + u0/r)2

+ 1
2 (ν̂1 + 2ν̂2)[u′2

0 + s′20 + 2(u′
0 + s′0)(w

′
0 + u0/r)] + ν̂1u

′
0s

′
0}, (4.34)

ŜZZ = k{(λ + 2μ)s′0 + λ(u′
0 + w′

0 + u0/r)}

+ k2 {(λ + 2μ)(s′1 − s′20 /2) + λ(u′
1 + u1/r − 1

2 [u′2
0 + (u0/r)2 + w′2

0 ] − 2w′
0u0/r)

+ 1
2 (ν̂1 + 6ν̂2 + 8ν̂3)s′20

+ 1
2 (ν̂1 + 2ν̂2)[u′2

0 + (w′
0 + u0/r)2 + 2(w′

0 + u′
0 + u0/r)s′0 ] + ν̂1u

′
0(w

′
0 + u0/r)}. (4.35)

Using (4.28) and (4.29), Cauchy stress σσσ = J−1F−TŜF−1 is, omitting terms of O(k3),

σσσ = σrrer ⊗ er + σθθeθ ⊗ eθ + σzzez ⊗ ez ; (4.36)

σrr = k{(λ + 2μ)u′
0 + λ(u0/r + w′

0 + s′0)}

+ k2{(λ + 2μ)(u′
1 − u′2

0 /2) + λ(u1/r + s′1 − 1
2 [(u0/r)2 + w′2

0 + s′20 ] − 2w′
0u0/r)

+ 1
2 (ν̂1 + 6ν̂2 + 8ν̂3)u′2

0 + 1
2 (ν̂1 + 2ν̂2)[(w′

0 + u0/r)2 + s′20

+ 2u′
0(u0/r + w′

0 + s′0)] + ν̂1s
′
0(u0/r + w′

0)

− [(λ + 2μ)u′
0 + λ(u0/r + w′

0 + s′0)](3u
′
0 + u0/r + w′

0 + s′0)}, (4.37)

σθθ = k{(λ + 2μ)(w′
0 + u0/r) + λ(u′

0 + s′0)}

+ k2{(λ + 2μ)(u1/r − 1
2 [(u0/r)2 + w′2

0 ] − 2w′
0u0/r) + λ(u′

1 − u′2
0 /2 + s′1 − s′20 /2)

+ 1
2 (ν̂1 + 6ν̂2 + 8ν̂3)(w′

0 + u0/r)2

+ 1
2 (ν̂1 + 2ν̂2)[u′2

0 + s′20 + 2(u′
0 + s′0)(w

′
0 + u0/r)] + ν̂1u

′
0s

′
0

− [(λ + 2μ)(w′
0 + u0/r) + λ(u′

0 + s′0)](u
′
0 + 3u0/r + 3w′

0 + s′0)}, (4.38)

σzz = k{(λ + 2μ)s′0 + λ(u′
0 + w′

0 + u0/r)}

+ k2 {(λ + 2μ)(s′1 − s′20 /2) + λ(u′
1 + u1/r − 1

2 [u′2
0 + (u0/r)2 + w′2

0 ] − 2w′
0u0/r)

+ 1
2 (ν̂1 + 6ν̂2 + 8ν̂3)s′20

+ 1
2 (ν̂1 + 2ν̂2)[u′2

0 + (w′
0 + u0/r)2 + 2(w′

0 + u′
0 + u0/r)s′0 ] + ν̂1u

′
0(w

′
0 + u0/r)

− [(λ + 2μ)s′0 + λ(u′
0 + u0/r + w′

0)](u
′
0 + u0/r + w′

0 + 3s′0)}. (4.39)
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These stress components are consistent with (3.36). Applying (A.39) in spatial physical components, equilibrium equations
∇ · σσσ = 0 reduce to

∂rσrr + (σrr − σθθ )/r = 0, ∂θσθθ = 0, ∂zσzz = 0. (4.40)

Since w′
0 = constant, Cauchy stress depends potentially only on r and z, so the second of (4.40) is trivially satisfied.

First consider equilibrium conditions corresponding to stress components linear in k, i.e., the first of (3.37), where

σσσ0(r, z) = [(λ + 2μ)u′
0 + λ(u0/r + w′

0 + s′0)]er ⊗ er

+ [(λ + 2μ)(w′
0 + u0/r) + λ(u′

0 + s′0)]eθ ⊗ eθ

+ [(λ + 2μ)s′0 + λ(u′
0 + u0/r + w′

0)]ez ⊗ ez . (4.41)

The first order (i.e., linear in k) axial equilibrium equation produces, with s0(0) = 0 to fix translational invariance,

∂z (σ0)zz = 0 ⇒ s′′0 = 0 ⇒ s0 = c3z, (4.42)

where c3 is a constant determined by boundary conditions on ends of the cylinder. Thus σσσ0 = σσσ0(r). The first order radial
equilibrium equation becomes

(λ + 2μ)(u′′
0 + u′

0/r − u0/r2) = 2μw′
0/r. (4.43)

This is an inhomogeneous second-order ordinary differential equation of Cauchy-Euler type, with general solution to the
homogeneous equation of the form c1r + c2/r and total solution

u0 = c1r + c2/r + [μw′
0/(λ + 2μ)]r ln r. (4.44)

Applying boundary conditions (σ0)rr |r=r0 = −p and (σ0)rr |r=R0 = 0, the solution is

c1 = χ(1 − 2ν) − w′
0/2 − νc3 −

μ

λ + 2μ
w′

0
R2

0 ln R0 − r2
0 ln r0

R2
0 − r2

0
, (4.45)

c2 = χR2
0 −

λ + μ

λ + 2μ
w′

0
R2

0r
2
0

R2
0 − r2

0
ln

R0

r0
, χ = [p/(2μ)][r2

0/(R2
0 − r2

0 )]. (4.46)

Substituting into (4.44), radial displacement in the linear solution is

u0 =
[
− ω

4π
+ (1 − 2ν)χ − νc3 −

ω

4π

1 − 2ν

1 − ν

R2
0 ln R0 − r2

0 ln r0

R2
0 − r2

0

]
r

+
[
χR2

0 −
1

1 − ν

ω

4π

R2
0r

2
0

R2
0 − r2

0
ln

R0

r0

]
1
r

+
[

ω

4π

1 − 2ν

1 − ν

]
r ln r. (4.47)

Constant c3 = s′0 can now be determined for either of the conditions in (4.23). For vanishing average axial stress,∫ θ=+π

θ=−π

∫ r=R0

r=r0

(σ0)zz rdrdθ = 0 ⇒ c3 = −2νχ/(1 + ν), (4.48)

meaning that positive core pressure leads to axial contraction for ν > 0. For the infinitely long disclination line, c3 = 0,
and the linear elastic stress field is

(σ0)rr =
μ

1 − ν

ω

2π
ln r − μ

1 − ν

ω

2π

R2
0 ln R0 − r2

0 ln r0

R2
0 − r2

0

−
[
2μχR2

0 −
μ

1 − ν

ω

2π

R2
0r

2
0

R2
0 − r2

0
ln

R0

r0

]
1
r2 + 2μχ, (4.49)

(σ0)θθ =
μ

1 − ν

ω

2π
(ln r + 1) − μ

1 − ν

ω

2π

R2
0 ln R0 − r2

0 ln r0

R2
0 − r2

0

+
[
2μχR2

0 −
μ

1 − ν

ω

2π

R2
0r

2
0

R2
0 − r2

0
ln

R0

r0

]
1
r2 + 2μχ, (4.50)
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(σ0)zz =
νμ

1 − ν

ω

2π
(2 ln r + 1) − 2νμ

1 − ν

ω

2π

R2
0 ln R0 − r2

0 ln r0

R2
0 − r2

0
+ 4νμχ. (4.51)

This solution agrees with [30] when the core is neglected such that r0 → 0 and χ = 0, in which case strain energy per unit
length is μ(kωR0)2/[16π(1 − ν)]. All components of σσσ0 are linear in ω or χ such that k factors out of the final solution
kσσσ0 .

Henceforth, only the infinitely extended disclination line geometry is addressed, which corresponds to s0 = s1 = 0 and
z = Z, and the solution is independent of z. First-order stresses (linear in k) for this case are (4.49)–(4.51). Now consider
equilibrium equations for stress components quadratic in k, i.e., the second of (3.37). From (4.37)–(4.39),

σσσ1(r) = [(λ + 2μ)u′
1 + λu1/r]er ⊗ er + [(λ + 2μ)u1/r + λu′

1 ]eθ ⊗ eθ

+ [λ(u′
1 + u1/r)]ez ⊗ ez , (4.52)

τττ(r) = { 1
2 (ν̂1 + 6ν̂2 + 8ν̂3 − 7λ − 14μ)u′2

0 + (ν̂1 + 2ν̂2 − 4λ − 2μ)u′
0u0/r

+ 1
2 (ν̂1 + 2ν̂2 − 3λ)(u0/r)2 + 1

2 (ν̂1 + 2ν̂2 − 3λ)w′2
0

+ (ν̂1 + 2ν̂2 − 4λ − 2μ)u′
0w

′
0 + (ν̂1 + 2ν̂2 − 4λ)w′

0u0/r}er ⊗ er

+ { 1
2 (ν̂1 + 2ν̂2 − 3λ)u′2

0 + (ν̂1 + 2ν̂2 − 4λ − 2μ)u′
0u0/r

+ 1
2 (ν̂1 + 6ν̂2 + 8ν̂3 − 7λ − 14μ)(u0/r)2 + 1

2 (ν̂1 + 6ν̂2 + 8ν̂3 − 7λ − 14μ)w′2
0

+ (ν̂1 + 2ν̂2 − 4λ − 2μ)u′
0w

′
0 + (ν̂1 + 6ν̂2 + 8ν̂3 − 8λ − 16μ)w′

0u0/r}eθ ⊗ eθ

+ { 1
2 (ν̂1 + 2ν̂2 − 3λ)u′2

0 + (ν̂1 − 2λ)u′
0u0/r + 1

2 (ν̂1 + 2ν̂2 − λ)(u0/r)2

+ 1
2 (ν̂1 + 2ν̂2 − λ)w′2

0 + (ν̂1 − 2λ)u′
0w

′
0 + (ν̂1 + 2λ)w′

0u0/r}ez ⊗ ez . (4.53)

The radial component of second-order equilibrium equation in (3.37) is

∂r (σ1 + τ)rr + [(σ1 + τ)rr − (σ1 + τ)θθ ]/r = 0. (4.54)

Substituting from (4.52) and (4.53), this becomes an inhomogeneous second-order ordinary differential equation of Cauchy-
Euler type:

u′′
1 + u′

1/r − u1/r2 = B1/r + B2/r3 + B3/r5 + B4(ln r)/r; (4.55)

B1 = − 1
λ + 2μ

[2c1c4(2ν̂1 + 10ν̂2 + 8ν̂3 − 11λ − 16μ)

+ c2
4(2ν̂1 + 10ν̂2 + 12ν̂3 − 13λ − 23μ) − w′2

0 (2ν̂2 + 4ν̂3 − 2λ − 7μ)

− 4c1w
′
0(ν̂2 + 2ν̂3 − λ − 4μ) + 2c4w

′
0(ν̂1 + 2ν̂2 − 4λ − μ)], (4.56)

B2 = − 4
λ + 2μ

c2 [c4μ − w′
0(ν̂2 + 2ν̂3 − λ − 3μ)], (4.57)

B3 = − 4
λ + 2μ

c2
2(λ + 5μ − 2ν̂2 − 4ν̂3), (4.58)

B4 = − 4
λ + 2μ

c4 [c4(ν̂1 + 4ν̂2 + 4ν̂3 − 11
2 λ − 8μ) − w′

0(ν̂2 + 2ν̂3 − λ − 4μ), (4.59)

c4 =
μ

μ + 2λ

ω

2π
=

1 − 2ν

1 − ν

ω

4π
, w′

0 =
ω

2π
. (4.60)

The homogeneous general solution to this equation is of the form C1r + C2/r. The particular solution is found using
Lagrange’s method, which when added to the homogeneous solution gives the total general solution

u1(r) = C1r +
C2

r
+

A1

r3 + A2r ln r + A3r ln2 r + A4
ln r

r
; (4.61)

A1 = B3/8, A2 = (2B1 − B4)/4, A3 = B4/4, A4 = −B2/2. (4.62)
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Consistent with boundary conditions and the second of (4.24), applying the vanishing second-order traction end conditions
(σ1)rr = −τrr at r = r0 and r = R0 gives

C1 = − D1

2(λ + μ)
+

1
2(λ + μ)(1 − R2

0/r2
0 )

{D3 [1/(R0r0)2 − 1/r4
0 ]

+ D4 [(R2
0/r2

0 ) ln R0 − ln r0 ] + D5 [(R2
0/r2

0 ) ln2 R0 − ln2 r0 ]

+ D6 [(ln R0)/r2
0 − (ln r0)/r2

0 ]}, (4.63)

C2 =
D2

2μ
+

1
2μ(1/R2

0 − 1/r2
0 )

{D3 [1/R4
0 − 1/r4

0 ] + D4 ln(R0/r0)

+ D5 [ln2 R0 − ln2 r0 ] + D6 [(ln R0)/R2
0 − (ln r0)/r2

0 ]}; (4.64)

D1 = (λ + 2μ)A2 + (ν̂1 + 2ν̂2 − 4λ)(2c1 + c4)w′
0 − 2μ(c1 + c4)w′

0

+ 1
2 (ν̂1 + 2ν̂2 − 3λ)w′2

0 + (2ν̂1 + 6ν̂2 + 4ν̂3 − 9λ − 9μ)c2
1

+ (2ν̂1 + 8ν̂2 + 8ν̂3 − 11λ − 16μ)c1c4 + 1
2 (ν̂1 + 6ν̂2 + 8ν̂3 − 7λ − 14μ)c2

4 , (4.65)

D2 = (λ + 2μ)A4 + 2μc2w
′
0 − 2(2ν̂2 + 4ν̂3 − 2λ − 7μ)c1c2

− (4ν̂2 + 8ν̂3 − 3λ − 12μ)c2c4 , (4.66)

D3 = −2(λ + 3μ)A1 + 1
2 (4ν̂2 + 8ν̂3 − 2λ − 10μ)c2

2 , (4.67)

D4 = (λ + 2μ)(A2 + 2A3) + λA2 + 2(2ν̂1 + 6ν̂2 + 4ν̂3 − 9λ − 9μ)c1c4

+ 2(ν̂1 + 2ν̂2 − 4λ − μ)c4w
′
0 + 1

2 (5ν̂1 + 18ν̂2 + 16ν̂3 − 25λ − 32μ)c2
4 , (4.68)

D5 = 2(λ + μ)A3 + 1
2 (3ν̂1 + 10ν̂2 + 8ν̂3 − 15λ − 18μ)c2

4 , (4.69)

D6 = −2μA4 − 2(2ν̂2 + 4ν̂3 − 2λ − 7μ)c2c4 . (4.70)

Second-order contribution to radial displacement u1 is now fully determined. The total displacement and stress fields are

u(r) = ku0(r) + k2u1(r), σσσ(r) = kσσσ0(r) + k2 [σσσ1(r) + τττ(r)], (4.71)

where u0 is given by (4.47) with c3 = 0, u1 by (4.61), σσσ0 by (4.49)–(4.51), σσσ1 by (4.52), and τττ by (4.53). Second-order
contributions are proportional to ω2 , χ2 , or ωχ; recalling that χ ∝ p = p̃/k and ω = ω̂/k, k does not affect the final
solution.

The complete solution depends on 9 parameters: geometric constants (ω̂, r0 , R0), elastic constants (λ, μ, ν̂1 , ν̂2 , ν̂3), and
core boundary condition p̃. General closed form expressions for stresses and displacements in terms of these parameters
have not been obtained due to the algebraic complexity of the solution, but numerical values could be found using a
computer program for a fixed set of parameters. Energy per unit length Ψ = 2π

∫ r=R0

r=r0
J−1(r)Ŵ (r)rdr similarly has not

been obtained in closed form, but could be integrated numerically. Further examination of the solution using numerical
methods is reserved for future work.

5 Point defect

5.1 Geometric description

Consider a deformed body B with boundary ∂B. In the reference configuration, the image of this body and its boundary are
B0 and ∂B0 . Spherical coordinates covering B and B0 are (r, θ, φ) and (R,Θ,Φ) and are described fully in Appendix B,
including basis vectors; Cartesian coordinates are (x, y, z) and (X,Y,Z).

An Eulerian description of deformation is invoked, in contrast to previous works that used Lagrangian descriptions
[57, 62, 72], and a different strain energy potential (Ŵ rather than W̄ ) is also used here. The point defect is treated as a
singular center of dilatation or contraction at point p ∈ B located at the origin of the spatial coordinate system. This defect
could physically correspond to a vacancy, interstitial, or substitutional atom, or an inclusion of small size. The general
ansatz for deformation due to a point defect in an isotropic body is of the spherically symmetric form

R(r) = r − u(r), Θ(θ) = θ, Φ(φ) = φ. (5.1)
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Radial displacement is u(r), positive for dilatation and negative for contraction. Rigid body translation is excluded, restrict-
ing u(0) = 0 such that p0 , the referential image of p, also occupies the origin of the coordinate system on B0 .

In curvilinear coordinates, the inverse deformation gradient from (5.1) is

F−1 = F−1R
�r GR ⊗ gr + F−1Θ

�θ GΘ ⊗ gθ + F−1Φ
�φGΦ ⊗ gφ

= [1 − u′(r)]GR ⊗ gr + GΘ ⊗ gθ + GΦ ⊗ gφ . (5.2)

Volume ratio is

J−1 = (R2/r2) det F−1 = (1 − u′)(1 − u/r)2 > 0, (5.3)

noting that
√

G/g = R2/r2 = (1 − u/r)2 . Applying the first of (2.49) in curvilinear coordinates,

F−1 = F I−1F E−1 = F I−1A
�α F E−1α

�a GA ⊗ ga . (5.4)

The second of (2.50) applied to the singular point defect is, with gA
α the shifter,

F I−1 = J I−1/3gα ⊗ gα = J I−1/3gA
α GA ⊗ gα , F I−1A

�α = J I−1/3gA
α ; (5.5)

J I−1 = 1 − δυδ(x)δ(y)δ(z) = 1 − δυδ(r). (5.6)

Inelastic volume change induced by the defect is measured by scalar constant δυ that can be positive or negative. The
spherical Dirac delta function is δ(r) = δ(x)δ(y)δ(z), differing from that used for cylindrical coordinates in Sect. 3 and
Sect. 4. Therefore,

F (X) = F E(X) ∀X ∈ B0\p0 , F−1(x) = F E−1(x) ∀x ∈ B\p. (5.7)

Vector ϑϑϑ entering Burgers vector integral (2.52) is of the spherically symmetric formϑϑϑ = ι(r)δ(r)gr . For an area element
of a spherical shell with unit normal gr , the differential form of (2.52) is db̂(r) = ι(r)δ(r)rgr da = ι(r)δ(r)r3 sin θdθdφgr .
Integral

∫
db̂ then vanishes identically for a point defect at r = 0, but does not always vanish for a different coordinate

system, similarly to the case for the disclination in Sect. 4.1.

5.2 Nonlinear elastic analysis and general solution

A nonlinear elastic boundary value problem for the point defect is constructed as follows. Let body B consist of an elastic
sphere of outer radius R0 with the ball 0 ≤ r < r0 removed. Body B is simply connected, as is its image in the reference
configuration, B0 . Region r < r0 is called the core of the point defect, and is elastically rigid, i.e., F E = 1 for r < r0 .
Deformation of the core region is inelastic or residual:

F−1 |r<r0 = F I−1 = J I−1/3ga ⊗ ga , J I = det F I, (5.8)

where the determinant applies in a coincident spatial basis {ga , ga} [15]. Spatial volume of the defect core is v0 = 4
3 πr3

0 ;
referential volume of the core is, from (5.6),

V0 =
∫

v0

J I−1dv =
∫

v0

[1 − δυδ(r)]dv = v0 − δυ. (5.9)

Displacement boundary conditions are imposed on the elastic body at its inner surface r = r0 such that the volume of a
spherical shell of radius r0 and constant thickness η̂ is equal to the volume change induced by the core:

δυ = 4πr2
0 η̂, η̂ = u(r0). (5.10)

Condition η̂ > 0 corresponds to a referential core of radius smaller than r0 , leading to radial expansion of the surrounding
elastic medium in the current configuration. Conversely, η̂ < 0 corresponds to a referential core of radius larger than r0 ,
leading to radial contraction of the surrounding elastic medium in the current configuration. Requiring V0 > 0 leads to
constraint η̂ < r0/3.

The solution procedure parallels that of Sect. 4.2, with spherical rather than cylindrical symmetry. Equilibrium equations
are solved on B, which excludes region r < r0 and therefore excludes singular point p. From (5.7), in this domain the strain
energy function in (2.53) becomes

W = W (F ) = Ŵ [D(F )] = W̄ [E(F )], (5.11)
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where Ŵ is used in the solution that follows. Equations (3.28)–(3.31) apply. Internal and external boundary conditions are

u|r=r0 = η̂, t|r=R0 = (σrr |r=R0 )gr = 0. (5.12)

The first of (5.12) prescribes radial displacement at the core consistent with inelastic volume change of the core. The second
of (5.12) enforces vanishing traction on the external part of ∂B.

An iterative solution procedure in Eulerian coordinates is invoked. Equations (3.34), (3.36), and (3.37) apply. Internal
boundary conditions are of the form

η̂ = kη. (5.13)

Displacement (3.34) applied to (5.1) results in

u(r) = ku0(r) + k2u1(r). (5.14)

In physical components, i.e., orthonormal bases {ea ,EA}, (5.2) and (B.36) become

[F−1
〈Aa〉] =

⎡
⎢⎣R′ 0 0

0 R/r 0
0 0 R/r

⎤
⎥⎦ =

⎡
⎢⎣1 − u′ 0 0

0 1 − u/r 0
0 0 1 − u/r

⎤
⎥⎦ . (5.15)

Substituting from (5.14),

[F−1
〈Aa〉] =

⎡
⎢⎣1 − ku′

0 − k2u′
1 0 0

0 1 − ku0/r − k2u1/r 0
0 0 1 − ku0/r − k2u1/r

⎤
⎥⎦ , (5.16)

and (5.3) becomes

J−1 = det[F−1
〈Aa〉] = (1 − ku′

0 − k2u′
1)(1 − ku0/r − k2u1/r)2 ≈ 1 − k(u′

0 + 2u0/r). (5.17)

In physical spherical components, strain tensor D is, from (3.28) and (5.16),

D = DRRER ⊗ ER + DΘΘEΘ ⊗ EΘ + DΦΦEΦ ⊗ EΦ; (5.18)

DRR = ku′
0 + k2(u′

1 − 1
2 u′2

0 ), DΘΘ = DΦΦ = ku0/r + k2 [u1/r − 1
2 (u0/r)2 ], (5.19)

where terms O(k3) have been truncated. Strain energy potential per unit reference volume (C.7) is used, truncated at third
order, leading to (3.47) which also applies here. Stress Ŝ = ∂Ŵ/∂D is, omitting terms of O(k3),

Ŝ = ŜRRER ⊗ ER + ŜΘΘEΘ ⊗ EΘ + ŜΦΦEΦ ⊗ EΦ; (5.20)

ŜRR = k{(λ + 2μ)u′
0 + 2λu0/r}

+ k2{(λ + 2μ)(u′
1 − u′2

0 /2) + 2λ[u1/r − 1
2 (u0/r)2 ]

+ 1
2 (ν̂1 + 6ν̂2 + 8ν̂3)u′2

0 + 2(ν̂1 + ν̂2)(u0/r)2 + 2(ν̂1 + 2ν̂2)u′
0u0/r}, (5.21)

ŜΘΘ = ŜΦΦ = k{(2λ + 2μ)u0/r + λu′
0}

+ k2{(2λ + 2μ)[u1/r − 1
2 (u0/r)2 ] + λ(u′

1 − u′2
0 /2)

+ 1
2 (ν̂1 + 2ν̂2)u′2

0 + 2(ν̂1 + 3ν̂2 + 2ν̂3)(u0/r)2 + 2(ν̂1 + ν̂2)u′
0u0/r}. (5.22)

Using (5.16) and (5.17), Cauchy stress σσσ = J−1F−TŜF−1 is, omitting terms of O(k3),

σσσ = σrrer ⊗ er + σθθeθ ⊗ eθ + σφφeφ ⊗ eφ ; (5.23)

σrr = k{(λ + 2μ)u′
0 + 2λu0/r}

+ k2{(λ + 2μ)(u′
1 − u′2

0 /2) + 2λ[u1/r − 1
2 (u0/r)2 ]

+ 1
2 (ν̂1 + 6ν̂2 + 8ν̂3)u′2

0 + 2(ν̂1 + ν̂2)(u0/r)2 + 2(ν̂1 + 2ν̂2)u′
0u0/r

− [(λ + 2μ)u′
0 + 2λu0/r](3u′

0 + 2u0/r)}, (5.24)
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σθθ = σφφ = k{(2λ + 2μ)u0/r + λu′
0}

+ k2{(2λ + 2μ)[u1/r − 1
2 (u0/r)2 ] + λ(u′

1 − u′2
0 /2)

+ 1
2 (ν̂1 + 2ν̂2)u′2

0 + 2(ν̂1 + 3ν̂2 + 2ν̂3)(u0/r)2 + 2(ν̂1 + ν̂2)u′
0u0/r

− [(2λ + 2μ)u0/r + λu′
0 ](u

′
0 + 4u0/r)}. (5.25)

These stress components are consistent with (3.36). Applying (B.38) in spatial physical components, equilibrium equations
∇ · σσσ = 0 reduce to, in the absence of shear stress,

∂rσrr + (2σrr − σθθ − σφφ)/r = 0, ∂θσθθ + (σθθ − σφφ) cot θ = 0, ∂φσφφ = 0. (5.26)

Noting that σσσ = σσσ(r) and σθθ = σφφ , the second and third equilibrium equations are trivially satisfied, and radial equilib-
rium becomes

dσrr/dr + 2(σrr − σθθ )/r = 0. (5.27)

First consider equilibrium conditions corresponding to stress components linear in k, i.e., the first of (3.37), where

σσσ0(r) = [(λ + 2μ)u′
0 + 2λu0/r]er ⊗ er + [(2λ + 2μ)u0/r + λu′

0 ](eθ ⊗ eθ + eφ ⊗ eφ). (5.28)

First order radial equilibrium equation (5.27) becomes

(λ + 2μ)(u′′
0 + 2u′

0/r − 2u0/r2) = 0. (5.29)

This is a homogeneous second-order ordinary differential equation of Cauchy-Euler type with general solution

u0 = c1r + c2/r2 . (5.30)

Applying boundary conditions u0(r0) = η and (σ0)rr |r=R0 = 0 consistently with (5.12) and (5.13), the solution is

c1 =
4μr2

0η

[(3λ + 2μ) + 4μ(r0/R0)3 ]R3
0
, c2 =

(3λ + 2μ)r2
0η

3λ + 2μ + 4μ(r0/R0)3 . (5.31)

First order stresses become

(σ0)rr = (3λ + 2μ)c1 − 4μc2/r3 , (σ0)θθ = (σ0)φφ = (3λ + 2μ)c1 + 2μc2/r3 . (5.32)

First-order pressure is − 1
3 trσσσ0 = −3Kc1 , with K = λ + 2

3 μ the bulk modulus. Displacement u0 and stresses (5.32) are
linear in η = η̂/k, so k does not affect the solution, which agrees with previous derivations [14, 81]. Strain energy density
is

Ŵ = 1
2 k2σσσ0 : D0 + O(k3) = 3

2 k2 [(3λ + 2μ)c2
1 + 4μc2

2/r6 ] + O(k3). (5.33)

Integrating over B and dividing by total volume of the elastic sphere minus core gives the average strain energy density in
the linear approximation

3
4π(R3

0 − r3
0 )

∫
B

J−1Ŵdv = 3
2 k2 [(3λ + 2μ)c2

1 + 4μc2
2/(R0r0)3 ] + O(k3). (5.34)

Now consider equilibrium equations for stress components quadratic in k, i.e., the second of (3.37). From (5.24) and
(5.25),

σσσ1(r) = [(λ + 2μ)u′
1 + 2λu1/r]er ⊗ er + [(2λ + 2μ)u1/r + λu′

1 ](eθ ⊗ eθ + eφ ⊗ eφ), (5.35)

τττ(r) = { 1
2 (ν̂1 + 6ν̂2 + 8ν̂3 − 7λ − 14μ)u′2

0 + 2(ν̂1 + 2ν̂2 − 4λ − 2μ)u′
0u0/r

+ (2ν̂1 + 2ν̂2 − 5λ)(u0/r)2}er ⊗ er

+ { 1
2 (ν̂1 + 2ν̂2 − 3λ)u′2

0 + 2(ν̂1 + ν̂2 − 3λ − μ)u′
0u0/r

+ (2ν̂1 + 6ν̂2 + 4ν̂3 − 9λ − 9μ)(u0/r)2}(eθ ⊗ eθ + eφ ⊗ eφ). (5.36)
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Second-order equilibrium equation (5.27) is

d(σ1 + τ)rr /dr + 2[(σ1 + τ)rr − (σ1 + τ)θθ ]/r = 0. (5.37)

Substituting from (5.35) and (5.36), this becomes an inhomogeneous second-order ordinary differential equation of Cauchy-
Euler type:

u′′
1 + 2

u′
1

r
− 2

u1

r2 =
18(2ν̂2 + 4ν̂3 − λ − 5μ)c2

2

(λ + 2μ)r7 . (5.38)

The general solution to the homogeneous equation is of the form C1r + C2/r2 ; adding this to the particular solution gives
the total solution

u1 = C1r + C2/r2 + A1/r5 , A1 = [(2ν̂2 + 4ν̂3 − λ − 5μ)c2
2 ]/(λ + 2μ). (5.39)

Consistent with boundary conditions (5.12) and (5.13), applying second-order end conditions u1(r0) = 0 and (σ1)rr =
−τrr at r = R0 gives

C1 = −A1

r6
0

+
1

3K + 4μ(r0/R0)3

[
3KA1

r6
0

+ B1 +
B2

R3
0

+
B3

R6
0

]
, (5.40)

C2 = − 1
3K + 4μ(r0/R0)3

[
3KA1

r3
0

+ B1r
3
0 +

B2r
3
0

R3
0

+
B3r

3
0

R6
0

]
; (5.41)

B1 = − 1
2 c2

1(9ν̂1 + 18ν̂2 + 8ν̂3 − 33λ − 22μ), (5.42)

B2 = 4c1c2(3ν̂2 + 4ν̂3 − 3λ − 8μ), (5.43)

B3 = −c2
2 [6ν̂2 + 16ν̂3 − 3λ(1 + A1/c2

2) − 10μ(2 + A1/c2
2)]. (5.44)

Second-order contribution to radial displacement u1 is now fully determined. The total displacement and stress fields are

u(r) = ku0(r) + k2u1(r), σσσ(r) = kσσσ0(r) + k2 [σσσ1(r) + τττ(r)], (5.45)

where u0 is given by (5.30), u1 by (5.39), σσσ0 by (5.32), σσσ1 by (5.35), and τττ by (5.36). Second-order contributions are
proportional to η2 ; recalling that η = η̂/k, k does not affect the final solution.

5.3 Solution for ideal crystal with Cauchy symmetry

The complete solution depends on 8 parameters: geometric constants (r0 , R0), elastic constants (λ, μ, ν̂1 , ν̂2 , ν̂3), and core
boundary condition δυ = 4πr2

0 η̂. The solution is further examined for a reduced set of parameters. The geometry and
displaced core volume can be expressed in terms of dimensionless parameters Λ and η0 :

Λ = R0/r0 > 1, η0 = η̂/r0 = δυ/(4πr3
0 ) < 1/3. (5.46)

Imposing Cauchy symmetry on the elastic constants as in Sect. 3.3, (3.85) applies, which reduces independent elastic
constants to K and K ′. The reduced set of 5 parameters entering the solution is now (Λ, r0 , η0 ,K,K ′). Noting that all
coefficients of displacement depend only on dimensionless ratios of elastic constants, normalized radial displacement u/r0
versus r/r0 depends only the set of 3 parameters (Λ, η0 ,K

′). Since stress components are linearly proportional to an elastic
constant, dimensionless stress σσσ/K versus r/r0 also depends only on this set, as does normalized volume change

ΔV

δυ
=

(4/3)πR3
0 − (4/3)π[R0 − u(R0)]3

4πr2
0 η̂

=
Λ3 − [Λ − u(R0)/r0 ]3

3η0
. (5.47)

Normalized radial displacement u/r0 is shown versus Eulerian radial coordinate r in Fig. 4. The effect of core displace-
ment is shown in Fig. 4(a) for an elastic sphere of size Λ = R0/r0 = 100 and K ′ = 4: dilatation (i.e., radial expansion)
increases with increasing η0 but decreases rapidly with increasing r. Recall that η0 > 0 corresponds physically to a large
substitutional atom or interstitial, while η0 < 0 corresponds to a small substitutional atom or vacancy. The effect of non-
linear elastic constant K ′ is shown in Fig. 4(b) for η0 = 0.3 and η0 = −0.3: dilatation increases with increasing K ′ for
η0 > 0 and radial contraction decreases with increasing K ′ for η0 < 0. The effect of sphere size R0 is shown in Fig. 4(c)
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(a) (b)

(c) (d)

Fig. 4 Total radial displacement for point defect: (a) variable core displacement η0 (b) variable K ′, η0 = 0.3,−0.3 (c)
variable sphere size R0 = Λr0 with η0 = 0.3 (d) variable sphere size R0 = Λr0 with η0 = −0.3.

(a) (b)

Fig. 5 Cauchy stress for point defect with K ′ = 4 and Λ = 100: (a) radial stress (b) circumferential stress.

and Fig. 4(d) for η0 = 0.3 and η0 = −0.3: for Λ ≥ 100, radial displacements are indistinguishable. For Λ ≤ 10, increased
magnitudes of u are observed since the unconstrained surface at R0 is closer to the core.

Normalized Cauchy stress field σσσ/K is shown in Fig. 5 for Λ = 100 and K ′ = 4. Radial stress σrr is shown in
Fig. 5(a), circumferential σθθ = σφφ in Fig. 5(b). Maximum magnitudes at r = r0 are on the order of K/2. Radial and
circumferential stress components are of opposite sign and decay rapidly within r � 10r0 .

Nonlinear and linear solutions for stress and normalized volume change are compared in Fig. 6 and Table 2, respec-
tively. Stress components shown in Fig. 6 correspond to fixed parameters Λ = 100, η0 = −0.3 (linear and nonlinear) and
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Fig. 6 Nonlinear and linear elastic solutions for stress
field of point defect with Λ = 100 and η0 = −0.3.

K ′ = 0, 4, 8 (nonlinear). For K ′ = 4, stresses obtained from the nonlinear solution are almost indistinguishable from
corresponding stresses of the linear solution. For K ′ �= 4, differences among stress predictions are evident near the core,
e.g., for r � 5r0 . Solutions for normalized volume change in Table 2 are obtained using (5.47). The linear solution [14,81]
is ΔV/δυ = 3(1 − ν)/(1 + ν); this yields a value of 9

5 when ν = 1
4 . As shown in Table 2, volume change is strongly

affected by elastic nonlinearity. For a material with K ′ differing substantially from 4, nonlinear theory should be used to
predict volume change from point defects, even though stress components may not differ significantly between linear and
nonlinear solutions for r � 5r0 .

Table 2 Volume change ΔV/δυ for point defect, Λ = 100.

η0 K ′ = 0 K ′ = 2 K ′ = 4 K ′ = 6 K ′ = 8 linear

0.3 0.00 0.93 1.85 2.78 3.70 1.80

0.1 1.20 1.51 1.82 2.13 2.43 1.80

-0.1 2.40 2.09 1.78 1.47 1.17 1.80

-0.3 3.60 2.67 1.75 0.82 -0.10 1.80

6 Conclusions

A nonlinear differential geometric framework of defective crystals has been presented, incorporating a multiplicative de-
composition of the deformation gradient into up to three terms and an additive decompostion of a linear connection de-
scribing covariant derivatives of a field of lattice director vectors. This theoretical framework has been applied to describe
three different singular defects: the screw dislocation, the wedge disclination, and the point defect. Inelastic deformation
is quantified for each defect using generalized functions in the sense of Gel’fand and Shilov, wherein singular parts of
the deformation gradient are defined as inelastic. This particular application of the multiplicative decomposition of the
deformation gradient for singular defects in the nonlinear theory is original. Analytical second-order solutions have been
obtained in the context of isotropic compressible nonlinear elasticity. These solutions are all new, incorporating an elastic
potential depending on an Eulerian strain measure in material coordinates with elastic constants up to third order. The iter-
ative solution procedure used herein omits, in the stress components, products of orders three and higher in certain strain
gradient components. Thus the present solutions are expected to be reasonably accurate when such higher-order products
are small, though exact solutions are not available for comparison. For the screw dislocation, radial displacements and
dilatation are strongly affected by elastic nonlinearity and core pressure, while stress fields tend to converge to linear elastic
solutions within a radial distance of 10-20 lattice parameters from the core. For the wedge disclination, effects of core
pressure on radial displacement and stress fields that have not been presented in previous linear or nonlinear analyses are
included. For the point defect, radial displacement and stress decay rapidly with distance from the core, but total volume
change in the body due to the point defect depends strongly on elastic nonlinearity.
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Appendix A: cylindrical coordinates

Reference cylindrical coordinates {XA} are

(X1 ,X2 ,X3) = (R,Θ, Z). (A.1)

Let X denote the position vector measured from the fixed origin:

X(R,Θ, Z) = RGR + ZGZ . (A.2)

Natural basis vectors are

GA = ∂AX; GR (Θ) = ∂RX, GΘ(R,Θ) = ∂ΘX, GZ = ∂Z X. (A.3)

The metric tensor with components GAB = GA · GB and its inverse are

[GAB ] =

⎡
⎢⎣1 0 0

0 R2 0
0 0 1

⎤
⎥⎦ , [GAB ] =

⎡
⎢⎣1 0 0

0 1/R2 0
0 0 1

⎤
⎥⎦ . (A.4)

Contravariant basis vectors are

GA = GAB GB ; GR (Θ) = GR , GΘ(R,Θ) = (1/R2)GΘ , GZ = GZ . (A.5)

Physical (dimensionless unit) basis vectors are

EA = GA/
√

GAA ; ER (Θ) = GR , EΘ(Θ) = (1/R)GΘ , EZ = GZ . (A.6)

Since cylindrical coordinates are orthogonal (EA = EA ), there is no need to distinguish between contravariant and covari-
ant physical components. Cylindrical coordinates are related to Cartesian coordinates as follows:

X = R cos Θ, Y = R sin Θ; X = XEX + Y EY + ZEZ ; (A.7)

ER = cos ΘEX + sin ΘEY , EΘ = − sin ΘEX + cos ΘEY , EZ = EZ . (A.8)

Spatial cylindrical coordinate chart {xa} has coordinates

(x1 , x2 , x3) = (r, θ, z). (A.9)

Let x denote the position vector measured from the fixed origin:

x(r, θ, z) = rgr + zgz . (A.10)

Natural basis vectors are

ga = ∂ax; gr (θ) = ∂rx, gθ (r, θ) = ∂θx, gz = ∂zx. (A.11)

The metric tensor with components gab = ga · gb and its inverse are

[gab ] =

⎡
⎢⎣1 0 0

0 r2 0
0 0 1

⎤
⎥⎦ , [gab ] =

⎡
⎢⎣1 0 0

0 1/r2 0
0 0 1

⎤
⎥⎦ . (A.12)
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Contravariant basis vectors are

ga = gabgb ; gr (θ) = gr , gθ (r, θ) = (1/r2)gθ , gz = gz . (A.13)

Physical basis vectors are

ea = ga/
√

gaa ; er (θ) = gr , eθ (θ) = (1/r)gθ , ez = gz . (A.14)

Cylindrical coordinates are related to Cartesian coordinates as

x = r cos θ, y = r sin θ; x = xex + yey + zez ; (A.15)

er = cos θex + sin θey , eθ = − sin θex + cos θey , ez = ez . (A.16)

In this paper, coincident Cartesian frames are used such that EA = δa
Aea :

EX = ex , EY = ey , EZ = ez . (A.17)

Mixed variant components of the shifter tensor between reference and spatial systems are [14, 15, 35]

ga
A (x,X) = 〈ga ,GA 〉; ga(x) = ga

AGA (X); (A.18)

where 〈·, ·〉 denotes a scalar product. Using (A.17), it follows that

gr
R (θ,Θ) = 〈gr (θ),GR (Θ)〉 = er (θ) · ER (Θ)

= (cos θex + sin θey ) · (cos ΘEX + sin ΘEY ) = cos(θ − Θ). (A.19)

Applying similar calculations, the matrix of components of ga
A (r, θ;R,Θ) is

[ga
A ] =

⎡
⎢⎣gr

R gr
Θ gr

Z

gθ
R gθ

Θ gθ
Z

gz
R gz

Θ gz
Z

⎤
⎥⎦ =

⎡
⎢⎣ cos(θ − Θ) R sin(θ − Θ) 0
−(1/r) sin(θ − Θ) (R/r) cos(θ − Θ) 0

0 0 1

⎤
⎥⎦ . (A.20)

The inverse of [ga
A ] is [gA

a ], such that ga
AgA

b = δa
b :

[gA
a ] =

⎡
⎢⎣gR

r gR
θ gR

z

gΘ
r gΘ

θ gΘ
z

gZ
r gZ

θ gZ
z

⎤
⎥⎦ =

⎡
⎢⎣ cos(θ − Θ) −r sin(θ − Θ) 0

(1/R) sin(θ − Θ) (r/R) cos(θ − Θ) 0
0 0 1

⎤
⎥⎦ . (A.21)

Letting G = det[GAB ] and g = det[gab ], determinants obey

det[ga
A ] =

√
G/g = R/r, det[gA

a ] =
√

g/G = r/R. (A.22)

In cylindrical coordinates, deformation x = x(X) is of the form

r = r(R,Θ, Z), θ = θ(R,Θ, Z), z = z(R,Θ, Z). (A.23)

Referred to natural bases {ga ,GA}, the deformation gradient is

F = ∂Ax ⊗ GA = ∂Axaga ⊗ GA = Fa
�Aga ⊗ GA

= ∂Rr gr ⊗ GR + ∂Θr gr ⊗ GΘ + ∂Z r gr ⊗ GZ

+ ∂Rθ gθ ⊗ GR + ∂Θθ gθ ⊗ GΘ + ∂Z θ gθ ⊗ GZ

+ ∂Rz gz ⊗ GR + ∂Θz gz ⊗ GΘ + ∂Z z gz ⊗ GZ . (A.24)

Referential and deformed volume elements

dV =
√

GdX1dX2dX3 = RdRdΘdZ, dv =
√

gdx1dx2dx3 = rdrdθdz (A.25)
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are related through the Jacobian determinant

J = dv/dV = det[Fa
�A ]

√
g/G = det[∂Axa ] det[gA

a ] = det[∂Axa ](r/R). (A.26)

Using (A.5), (A.6), and (A.14) to convert natural bases to orthonormal bases {ea ,EA}, the two-point deformation gradient
in physical components is

F = F〈aA〉ea ⊗ EA

= ∂Rr er ⊗ ER + (1/R)∂Θr er ⊗ EΘ + ∂Z r er ⊗ EZ

+ r∂Rθ eθ ⊗ ER + (r/R)∂Θθ eθ ⊗ EΘ + r∂Z θ eθ ⊗ EZ

+ ∂Rz ez ⊗ ER + (1/R)∂Θz ez ⊗ EΘ + ∂Z z ez ⊗ EZ , (A.27)

where physical scalar components are written in angled brackets. The Jacobian is

J = det[F〈aA〉]. (A.28)

Using the shifter (A.21), the deformation gradient can be expressed completely with respect to Lagrangian bases:

F = ∂Axa(gB
a GB ) ⊗ GA = [∂AxagB

a ]GB ⊗ GA

= [∂Rr cos(θ − Θ) − r∂Rθ sin(θ − Θ)]GR ⊗ GR

+ [∂Θr cos(θ − Θ) − r∂Θθ sin(θ − Θ)]GR ⊗ GΘ

+ [∂Z r cos(θ − Θ) − r∂Z θ sin(θ − Θ)]GR ⊗ GZ

+ [(1/R)∂Rr sin(θ − Θ) + (r/R)∂Rθ cos(θ − Θ)]GΘ ⊗ GR

+ [(1/R)∂Θr sin(θ − Θ) + (r/R)∂Θθ cos(θ − Θ)]GΘ ⊗ GΘ

+ [(1/R)∂Z r sin(θ − Θ) + (r/R)∂Z θ cos(θ − Θ)]GΘ ⊗ GZ

+ [∂Rz]GZ ⊗ GR + [∂Θz]GZ ⊗ GΘ + [∂Z z]GZ ⊗ GZ . (A.29)

In physical components this becomes

F = F〈AB 〉EA ⊗ EB

= [∂Rr cos(θ − Θ) − r∂Rθ sin(θ − Θ)]ER ⊗ ER

+ [(1/R)∂Θr cos(θ − Θ) − (r/R)∂Θθ sin(θ − Θ)]ER ⊗ EΘ

+ [∂Z r cos(θ − Θ) − r∂Z θ sin(θ − Θ)]ER ⊗ EZ

+ [∂Rr sin(θ − Θ) + r∂Rθ cos(θ − Θ)]EΘ ⊗ ER

+ [(1/R)∂Θr sin(θ − Θ) + (r/R)∂Θθ cos(θ − Θ)]EΘ ⊗ EΘ

+ [∂Z r sin(θ − Θ) + r∂Z θ cos(θ − Θ)]EΘ ⊗ EZ

+ [∂Rz]EZ ⊗ ER + [(1/R)∂Θz]EZ ⊗ EΘ + [∂Z z]EZ ⊗ EZ . (A.30)

Similarly, expressing F entirely with respect to natural spatial bases,

F = ∂Axaga ⊗ (gA
b gb) = [∂AxagA

b ]ga ⊗ gb

= [∂Rr cos(θ − Θ) + (1/R)∂Θr sin(θ − Θ)]gr ⊗ gr

+ [∂Rθ cos(θ − Θ) + (1/R)∂Θθ sin(θ − Θ)]gθ ⊗ gr

+ [∂Rz cos(θ − Θ) + (1/R)∂Θz sin(θ − Θ)]gz ⊗ gr

+ [−r∂Rr sin(θ − Θ) + (r/R)∂Θr cos(θ − Θ)]gr ⊗ gθ

+ [−r∂Rθ sin(θ − Θ) + (r/R)∂Θθ cos(θ − Θ)]gθ ⊗ gθ

+ [−r∂Rz sin(θ − Θ) + (r/R)∂Θz cos(θ − Θ)]gz ⊗ gθ

+ [∂Z r]gr ⊗ gz + [∂Z θ]gθ ⊗ gz + [∂Z z]gz ⊗ gz . (A.31)
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In spatial physical components,

F = F〈ab〉ea ⊗ eb

= [∂Rr cos(θ − Θ) + (1/R)∂Θr sin(θ − Θ)]er ⊗ er

+ [r∂Rθ cos(θ − Θ) + (r/R)∂Θθ sin(θ − Θ)]eθ ⊗ er

+ [∂Rz cos(θ − Θ) + (1/R)∂Θz sin(θ − Θ)]ez ⊗ er

+ [−∂Rr sin(θ − Θ) + (1/R)∂Θr cos(θ − Θ)]er ⊗ eθ

+ [−r∂Rθ sin(θ − Θ) + (r/R)∂Θθ cos(θ − Θ)]eθ ⊗ eθ

+ [−∂Rz sin(θ − Θ) + (1/R)∂Θz cos(θ − Θ)]ez ⊗ eθ

+ [∂Z r]er ⊗ ez + [r∂Z θ]eθ ⊗ ez + [∂Z z]ez ⊗ ez . (A.32)

Letting F → F P, (A.29) becomes an example of the plastic deformation gradient referred to coincident curvilinear coor-
dinate frames in reference and intermediate configurations, as used in [14, 15, 18, 75]. With F → F L, (A.31) becomes an
example of coincident curvilinear systems in current and intermediate configurations, as in [14, 15].

In cylindrical coordinates, inverse deformation X = X(x) is of the form

R = R(r, θ, z), Θ = Θ(r, θ, z), Z = Z(r, θ, z). (A.33)

Referred to natural bases {GA , ga}, the inverse deformation gradient is

F−1 = ∂aX ⊗ ga = ∂aXAGA ⊗ ga = F−1A
�a GA ⊗ ga

= ∂rR GR ⊗ gr + ∂θR GR ⊗ gθ + ∂zR GR ⊗ gz

+ ∂rΘ GΘ ⊗ gr + ∂θΘ GΘ ⊗ gθ + ∂zΘ GΘ ⊗ gz

+ ∂rZ GZ ⊗ gr + ∂θZ GZ ⊗ gθ + ∂zZ GZ ⊗ gz . (A.34)

The inverse of the Jacobian determinant J−1 = 1/J is

J−1 = dV/dv = det[F−1A
�a ]

√
G/g = det[∂aXA ] det[ga

A ] = det[∂aXA ](R/r). (A.35)

In orthonormal bases {EA ,ea}, two-point inverse deformation gradient is

F−1 = F−1
〈Aa〉EA ⊗ ea

= ∂rR ER ⊗ er + (1/r)∂θR ER ⊗ eθ + ∂zR ER ⊗ ez

+ R∂rΘ EΘ ⊗ er + (R/r)∂θΘ EΘ ⊗ eθ + R∂zΘ EΘ ⊗ ez

+ ∂rZ EZ ⊗ er + (1/r)∂θZ EZ ⊗ eθ + ∂zZ EZ ⊗ ez , (A.36)

with inverse Jacobian determinant

J−1 = det[F−1
〈Aa〉]. (A.37)

A spatial displacement field in physical cylindrical coordinates can be constructed using the shifter:

u = x − X = rgr + zgz − RGR − ZGZ = rgr − Rga
Rga + (z − Z)GZ

= [r − R cos(θ − Θ)]er + [R sin(θ − Θ)]eθ + [z − Z]ez = urer + uθeθ + uzez . (A.38)

The divergence of a second-order tensor field A(x) = A〈ab〉ea ⊗ eb is, in physical cylindrical coordinates [65],

∇ · A = [(1/r)∂r (rArr ) + (1/r)∂θAθr + ∂zAzr − (1/r)Aθθ ]er

+ [(1/r)∂r (rArθ ) + (1/r)∂θAθθ + ∂zAzθ + (1/r)Aθr ]eθ

+ [(1/r)∂r (rArz ) + (1/r)∂θAθz + ∂zAzz ]ez . (A.39)
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Appendix B: spherical coordinates

Reference spherical coordinates {XA} are

(X1 ,X2 ,X3) = (R,Θ,Φ). (B.1)

Let X denote the position vector measured from a fixed origin:

X(R,Θ,Φ) = RGR (Θ,Φ). (B.2)

Natural basis vectors are

GA = ∂AX; GR (Θ,Φ) = ∂RX, GΘ(R,Θ,Φ) = ∂ΘX, GΦ(R,Θ,Φ) = ∂ΦX. (B.3)

The metric tensor with components GAB = GA · GB and its inverse are

[GAB ] =

⎡
⎢⎣1 0 0

0 R2 0
0 0 R2 sin2 Θ

⎤
⎥⎦ , [GAB ] =

⎡
⎢⎣1 0 0

0 1/R2 0
0 0 1/(R2 sin2 Θ)

⎤
⎥⎦ . (B.4)

Contravariant basis vectors are

GA = GAB GB ; GR = GR , GΘ = (1/R2)GΘ , GΦ = [1/(R2 sin2 Θ)]GΦ . (B.5)

Physical (dimensionless unit) basis vectors are

EA = GA/
√

GAA ; ER = GR , EΘ = (1/R)GΘ , EΦ = [1/(R sin Θ)]GΦ . (B.6)

Since spherical coordinates are orthogonal (EA = EA ), there is no need to distinguish between contravariant and covariant
physical components. Spherical coordinates are related to Cartesian coordinates as follows:

X = R sin Θ cos Φ, Y = R sin Θ sin Φ, Z = R cos Θ; X = XEX + Y EY + ZEZ ; (B.7)

ER = sin Θ cos ΦEX + sin Θ sin ΦEY + cos ΘEZ ,

EΘ = cos Θ cos ΦEX + cos Θ sin ΦEY − sin ΘEZ ,

EΦ = − sin ΦEX + cos ΦEY . (B.8)

Spatial spherical coordinate chart {xa} has coordinates

(x1 , x2 , x3) = (r, θ, φ). (B.9)

Let x denote the position vector measured from a fixed origin:

x(r, θ, φ) = rgr (θ, φ). (B.10)

Natural basis vectors are

ga = ∂ax; gr (θ, φ) = ∂rx, gθ (r, θ, φ) = ∂θx, gφ(r, θ, φ) = ∂φx. (B.11)

The metric tensor with components gab = ga · gb and its inverse are

[gab ] =

⎡
⎢⎣1 0 0

0 r2 0
0 0 r2 sin2 φ

⎤
⎥⎦ , [gab ] =

⎡
⎢⎣1 0 0

0 1/r2 0
0 0 1/(r2 sin2 φ)

⎤
⎥⎦ . (B.12)

Contravariant basis vectors are

ga = gabgb ; gr = gr , gθ = (1/r2)gθ , gφ = [1/(r2 sin2 θ)]gφ . (B.13)
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Physical basis vectors are

ea = ga/
√

gaa ; er = gr , eθ = (1/r)gθ , eφ = [1/(r sin θ)]gφ . (B.14)

Spherical coordinates are related to Cartesian coordinates as

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ; x = xex + yey + zez ; (B.15)

er = sin θ cos φex + sin θ sinφey + cos θez ,

eθ = cos θ cos φex + cos θ sinφey − sin θez ,

eφ = − sin φex + cos φey . (B.16)

Using (A.17), the matrix of shifter components ga
A (r, θ, φ;R,Θ,Φ) is

[ga
A ] =

⎡
⎢⎣gr

R gr
Θ gr

Φ

gθ
R gθ

Θ gθ
Φ

gφ
R gφ

Θ gφ
Φ

⎤
⎥⎦ ; (B.17)

gr
R = sin θ sin Θ cos(φ − Φ) + cos θ cos Θ, (B.18)

gr
Θ = R[sin θ cos Θ cos(φ − Φ) − cos θ sin Θ], (B.19)

gr
Φ = R sin θ sin Θ sin(φ − Φ), (B.20)

gθ
R = (1/r)[cos θ sin Θ cos(φ − Φ) − sin θ cos Θ], (B.21)

gθ
Θ = (R/r)[cos θ cos Θ cos(φ − Φ) + sin θ sin Θ], (B.22)

gθ
Φ = (R/r) cos θ sin Θ sin(φ − Φ), (B.23)

gφ
R = −[sin Θ/(r sin θ)] sin(φ − Φ), (B.24)

gφ
Θ = −[(R cos Θ)/(r sin θ)] sin(φ − Φ), (B.25)

gφ
Φ = [(R sin Θ)/(r sin θ)] cos(φ − Φ). (B.26)

Letting G = det[GAB ] = R4 sin2 Θ and g = det[gab ] = r4 sin2 θ, determinants obey

det[ga
A ] =

√
G/g = R2 sin Θ/(r2 sin θ), det[gA

a ] =
√

g/G = r2 sin θ/(R2 sin Θ). (B.27)

In spherical coordinates, deformation x = x(X) is of the form

r = r(R,Θ,Φ), θ = θ(R,Θ,Φ), φ = φ(R,Θ,Φ). (B.28)

Referred to natural bases {ga ,GA}, the deformation gradient is

F = ∂Ax ⊗ GA = ∂Axaga ⊗ GA = Fa
�Aga ⊗ GA

= ∂Rr gr ⊗ GR + ∂Θr gr ⊗ GΘ + ∂Φr gr ⊗ GΦ

+ ∂Rθ gθ ⊗ GR + ∂Θθ gθ ⊗ GΘ + ∂Φθ gθ ⊗ GΦ

+ ∂Rφ gφ ⊗ GR + ∂Θφ gφ ⊗ GΘ + ∂Φφ gφ ⊗ GΦ . (B.29)

Referential and deformed volume elements

dV =
√

GdX1dX2dX3 = R2 sin ΘdRdΘdΦ, dv =
√

gdx1dx2dx3 = r2 sin θdrdθdφ (B.30)

are related through the Jacobian determinant

J = dv/dV = det[Fa
�A ]

√
g/G = det[∂Axa ] det[gA

a ] = det[∂Axa ][r2 sin θ/(R2 sin Θ)]. (B.31)
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Using (B.5), (B.6), and (B.14) to convert natural basis vectors to spherical orthonormal bases {ea ,EA}, the two-point
deformation gradient in physical components is

F = F〈aA〉ea ⊗ EA

= ∂Rr er ⊗ ER + (1/R)∂Θr er ⊗ EΘ + [1/(R sin Θ)]∂Φr er ⊗ EΦ

+ r∂Rθ eθ ⊗ ER + (r/R)∂Θθ eθ ⊗ EΘ + [r/(R sin Θ)]∂Φθ eθ ⊗ EΦ

+ r sin θ∂Rφ eφ ⊗ ER + (r/R) sin θ∂Θφ eφ ⊗ EΘ + [r sin θ/(R sin Θ)]∂Φφ eφ ⊗ EΦ . (B.32)

Inverse deformation X = X(x) is of the form, in spherical coordinates,

R = R(r, θ, φ), Θ = Θ(r, θ, φ), Φ = Φ(r, θ, φ). (B.33)

Referred to natural bases {GA , ga}, the inverse deformation gradient is

F−1 = ∂aX ⊗ ga = ∂aXAGA ⊗ ga = F−1A
�a GA ⊗ ga

= ∂rR GR ⊗ gr + ∂θR GR ⊗ gθ + ∂φR GR ⊗ gφ

+ ∂rΘ GΘ ⊗ gr + ∂θΘ GΘ ⊗ gθ + ∂φΘ GΘ ⊗ gφ

+ ∂rΦ GΦ ⊗ gr + ∂θΦ GΦ ⊗ gθ + ∂φΦ GΦ ⊗ gφ . (B.34)

The inverse of the Jacobian determinant J−1 = 1/J is

J−1 = dV/dv = det[F−1A
�a ]

√
G/g = det[∂aXA ][R2 sin Θ/(r2 sin θ)]. (B.35)

With respect to orthonormal bases {ea ,EA}, the inverse deformation gradient is

F−1 = F−1
〈Aa〉EA ⊗ ea

= ∂rR ER ⊗ er + (1/r)∂θR ER ⊗ eθ + [1/(r sin θ)]∂φR ER ⊗ eφ

+ R∂rΘ EΘ ⊗ er + (R/r)∂θΘ EΘ ⊗ eθ + [R/(r sin θ)]∂φΘ EΘ ⊗ eφ

+ R sin Θ∂rΦ EΦ ⊗ er + (R/r) sin Θ∂θΦ EΦ ⊗ eθ

+ [R sin Θ/(r sin θ)]∂φΦ EΦ ⊗ eφ . (B.36)

A spatial displacement field in physical spherical coordinates can be constructed using the shifter of (B.17):

u = x − X = rgr − RGR = rgr − Rga
Rga

= [r − Rgr
R ]er + [−Rrgθ

R ]eθ + [−Rr sin θgφ
R ]eφ = urer + uθeθ + uφeφ . (B.37)

The divergence of a second-order tensor field A(x) = A〈ab〉ea ⊗ eb in physical spherical coordinates is [65]

∇ · A = {(1/r2)∂r (r2Arr ) + [1/(r sin θ)]∂θ (sin θAθr )

+ [1/(r sin θ)]∂φAφr − (1/r)(Aθθ + Aφφ)}er

+ {(1/r2)∂r (r2Arθ ) + [1/(r sin θ)]∂θ (sin θAθθ )

+ [1/(r sin θ)]∂φAφθ + (1/r)(Aθr − cot θAφφ)}eθ

+ {(1/r2)∂r (r2Arφ) + (1/r)∂θ (sin θAθφ)

+ [1/(r sin θ)]∂φAφφ + (1/r)(Aφr + Aφθ )}eφ . (B.38)

Appendix C: elastic potentials

Let F = ∇0x denote the deformation gradient. Eulerian strain D and Lagrangian Green strain E, both referred to material
coordinates, are defined as [16, 28, 29, 85]

D = 1
2 (1 − F−1F−T), E = 1

2 (F TF − 1). (C.1)
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For a homogeneous material, strain energy per unit reference volume is of the form

W = W (F ) = Ŵ [D(F )] = W̄ [E(F )]. (C.2)

First Piola-Kirchhoff stress and static linear momentum balance in the absence of body force are

P = ∂W/∂F , ∇0 · P = 0 (∇0APaA = 0). (C.3)

Thermodynamic conjugates to strains are symmetric stresses in material coordinates

Ŝ = ∂Ŵ/∂D, S̄ = ∂W̄/∂E. (C.4)

From symmetries of tensors in (C.4), the chain rule and ∂F−1A
�a /∂F b

�B = −F−1A
�b F−1B

�a ,

P =
∂Ŵ

∂D
:

∂D

∂F
= F−TŜF−1F−T, P =

∂W̄

∂E
:

∂E

∂F
= F S̄. (C.5)

Cauchy stress then follows as [16, 28, 29, 85]

σσσ = J−1PF T = J−1F−TŜF−1 = J−1F S̄F T. (C.6)

Using Greek indices to denote Voigt notation in a Cartesian frame (e.g., α = 1, 2, . . . 6), strain energies are written as
Taylor polynomials in either strain measure:

Ŵ = 1
2 Ĉαβ DαDβ + 1

6 Ĉαβγ DαDβ Dγ + · · · , (C.7)

W̄ = 1
2 C̄αβ EαEβ + 1

6 C̄αβγ EαEβ Eγ + · · · . (C.8)

Setting moduli ∂2Ŵ/∂F ∂F = ∂2W̄/∂F ∂F at the unstrained reference state, second-order elastic constants are equiva-
lent among Eulerian and Lagrangian representations:

Ĉαβ = C̄αβ = Cαβ . (C.9)

Setting moduli ∂3Ŵ/∂F ∂F ∂F = ∂3W̄/∂F ∂F ∂F at the unstrained reference state, third-order elastic constants are
related as follows in Cartesian tensor notation [16]:

ĈIJ K LM N = C̄IJ K LM N + δIK CJ LM N + δILCJ K M N + δIM CK LJ N + δIN CK LJ M

+ δJ K CILM N + δJ M CIN K L + δJ LCIK M N + δJ N CIM K L

+ δK M CIJ LN + δK N CIJ LM + δLM CIJ K N + δLN CIJ K M . (C.10)

Relations identical to (C.9) and (C.10) can also be derived using the expansion E = D + 2D2 + · · · and equating like
terms in Ŵ and W̄ to third order in strain components [66, 90]. For an isotropic solid [14, 81],

CIJ K L = λδIJ δK L + μ(δIK δJ L + δILδJ K ), (C.11)

ĈIJ K LM N = ν̂1 [δIJ δK LδM N ]

+ ν̂2 [δIJ (δK M δLN + δK N δLM )

+ δK L (δIM δJ N + δIN δJ M ) + δM N (δIK δJ L + δILδJ K )]

+ ν̂3 [δIK (δJ M δLN + δJ N δLM ) + δJ L (δIM δK N + δIN δK M )

+ δIL (δJ M δK N + δJ N δK M ) + δJ K (δIM δLN + δIN δLM )], (C.12)

C̄IJ K LM N = ν̄1 [δIJ δK LδM N ]

+ ν̄2 [δIJ (δK M δLN + δK N δLM )

+ δK L (δIM δJ N + δIN δJ M ) + δM N (δIK δJ L + δILδJ K )]

+ ν̄3 [δIK (δJ M δLN + δJ N δLM ) + δJ L (δIM δK N + δIN δK M )

+ δIL (δJ M δK N + δJ N δK M ) + δJ K (δIM δLN + δIN δLM )]. (C.13)
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These also apply pointwise in a physical components in an orthogonal system, and contravariant components can be recov-
ered for general curvilinear systems by setting δIJ → GIJ . Second-order constants obey the familiar relations

C11 = λ + 2μ, C12 = λ, C44 = μ; ν = λ/(2λ + 2μ), K = λ + 2
3 μ. (C.14)

Third-order constants obey the following relations (Ĉαβγ or C̄αβγ ):

C111 = ν1 + 6ν2 + 8ν3 , C112 = ν1 + 2ν2 , C123 = ν1 ,

C144 = ν2 , C155 = ν2 + 2ν3 , C456 = ν3 . (C.15)

For isotropic materials, (C.10) reduces to

ν̂1 = ν̄1 , ν̂2 = ν̄2 + 2λ, ν̂3 = ν̄3 + 3μ. (C.16)

For hydrostatic loading (σσσ = −p1, F = J1/31), pressure derivative of tangent bulk modulus B at the reference state is
[16, 42, 63]

B′
0 = (dB/dp)|p=0 = − 1

K (ν̂1 + 2ν̂2 + 8
9 ν̂3) + 4 = − 1

K (ν̄1 + 2ν̄2 + 8
9 ν̄3). (C.17)

Since typical crystalline solids have 2 < B′
0 < 7 [45], third-order constants Ĉαβγ are generally smaller in magnitude

than C̄αβγ , suggesting that series (C.7) converges faster, i.e., requires fewer higher-order terms for a given accuracy, than
(C.8). Under hydrostatic loading, stress-strain constitutive relations degenerate to the following pressure-volume equations
of state [16, 84]:

p = −∂Ŵ/∂J = 3
2 K(J−7/3 − J−5/3)[1 + 3

4 (B′
0 − 4)(J−2/3 − 1)], (Eulerian) (C.18)

p = −∂W̄/∂J = 3
2 K(J−1/3 − J1/3)[1 − 3

4 B′
0(J

2/3 − 1)]. (Lagrangian) (C.19)

Birch-Murnaghan equation of state (C.18) is often used to accurately fit hydrostatic and shock compression data to high
pressures [11, 45], while Lagrangian equation of state (C.19) is usually deemed less accurate [45]. For an isotropic material
also obeying Cauchy’s symmetry relations [14, 87],

λ = μ = 3
5 K ⇔ ν = 1

4 , (C.20)

ν̄1 = ν̄2 = ν̄3 = − 9
35 KB′

0 . (C.21)

Applying (C.16) with (C.20) and (C.21),

ν̂1 = − 9K
35 B′

0 , ν̂2 = −K
5 ( 9

7 B′
0 − 6), ν̂3 = −K

5 ( 9
7 B′

0 − 9). (C.22)

It is instructive to compare Eulerian D-based theory with Murnaghan’s theory [61] based on Almansi strain e:

W = W̃ [e(F )], e = 1
2 (1 − F−TF−1). (C.23)

Because e is referred to spatial coordinates and is not rotationally invariant, strain energy W̃ is restricted to isotropic
materials, in contrast to Ŵ . Stresses are [61, 84]

σσσ = J−1F−TF−1S̃, S̃ = ∂W̃/∂e. (C.24)

Typically W̃ is expressed as a function of three scalar invariants [38, 52, 61]:

W̃ (I1 , I2 , I3) = ( 1
2 λ + μ)I2

1 − 2μI2 + 1
6 (ν̃1 + 6ν̃2 + 8ν̃3)I3

1 − 2(ν̃2 + 2ν̃3)I1I2 + 4ν̃3I3 ; (C.25)

I1 = tre, I2 = 1
2 [(tre)2 − tr(e2)], I3 = det e. (C.26)

Second-order constants λ and μ are identical to those already introduced. Third-order constants are usually related to
Lagrangian constants by writing W̄ in terms of invariants of E, using algebraic relationships between these invariants and
those in (C.26) [61], and comparing coefficients of like terms in W̃ and W̄ , giving [38]

ν̃1 = 1
3 (ν̄1 + 18ν̄2 + 44ν̄3), ν̃2 = 2(λ − ν̄2 − 3ν̄3), ν̃3 = ν̄3 + 3μ. (C.27)
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From (C.16) and (C.27), in general ν̃1 	= ν̂1 and ν̃2 	= ν̂2 , but ν̃3 = ν̂3 . These differences arise because of different
truncations used to relate Eulerian to Lagrangian strain components or invariants. Note that when F (and hence F−1) is
symmetric, D = e in a common coordinate frame, and D and e share the same invariants regardless of rotation. Therefore,
for an isotropic solid subjected to a given F , setting ν̃1 = ν̂1 , ν̃2 = ν̂2 , and ν̃3 = ν̂3 will produce W̃ = Ŵ and result
in the same Cauchy stress σσσ from (C.24) or the second of (C.6), though generally S̃ 	= Ŝ. A Birch-Murnaghan equation
of state also follows, i.e., p = −∂W̃/∂J reduces to (C.18). However, because their third-order constants are not required
to be equal, in general, energy and stress predicted by Eulerian theory based on D and that based on e can differ, even
for isotropic materials, and only D-based theory can be applied to anisotropic materials, of course removing symmetry
restrictions in (C.11) and (C.12).
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